Bibliography
- Anderson, 2001
-
Anderson, M. (2001).
A new method for non-parametric multivariate analysis of variance.
Austral Ecology, 26(1):32-46. - Callahan et al., 2016
-
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., and
Holmes, S. P. (2016).
Dada2: High resolution sample inference from illumina amplicon data repository.
Nature Methods, 13:581-583. - Caspi et al., 2019
-
Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M.,
Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., and Karp, P. D.
(2019).
The MetaCyc database of metabolic pathways and enzymes - a 2019 update.
Nucleic Acids Research, 48(D1):D445-D453. - Chen et al., 2012
-
Chen, J., Bittinger, K., Charlson, E. S., Hoffmann, C., Lewis, J., Wu, G. D.,
Collman, R. G., Bushman, F. D., and Li, H. (2012).
Associating microbiome composition with environmental covariates using generalized unifrac distances.
Bioinformatics, 28(16):2106-13. - Couvin et al., 2020
-
Couvin, D., Segretier, W., Stattner, E., and Rastogi, N. (2020).
Novel methods included in spollineages tool for fast and precise prediction of mycobacterium tuberculosis complex spoligotype families.
Database, 2020:baaa108. - Curry et al., 2022
-
Curry, K. D., Wang, Q., Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S.,
Wu, Q., Graeber, E., Finzer, P., Mendling, W., et al. (2022).
Emu: species-level microbial community profiling of full-length 16s rrna oxford nanopore sequencing data.
Nature methods, 19(7):845-853. - Douglas et al., 2020
-
Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R.,
Taylor, C. M., Huttenhower, C., and Langille, M. G. I. (2020).
PICRUSt2 for prediction of metagenome functions.
Nature Biotechnology, 38(6):685-688. - Dueholm et al., 2022
-
Dueholm, M. K. D., Nierychlo, M., Andersen, K. S., Rudkjøbing, V., Knutsson,
S., Arriaga, S., Bakke, R., Boon, N., Bux, F., Christensson, M., Chua, A.
S. M., Curtis, T. P., Cytryn, E., Erijman, L., Etchebehere, C.,
Fatta-Kassinos, D., Frigon, D., Garcia-Chaves, M. C., Gu, A. Z., Horn, H.,
Jenkins, D., Kreuzinger, N., Kumari, S., Lanham, A., Law, Y., Leiknes, T.,
Morgenroth, E., Muszynski, A., Petrovski, S., Pijuan, M., Pillai,
S. B., Reis, M. A. M., Rong, Q., Rossetti, S., Seviour, R., Tooker, N.,
Vainio, P., van Loosdrecht, M., Vikraman, R., Wanner, J., Weissbrodt, D.,
Wen, X., Zhang, T., Nielsen, P. H., Albertsen, M., Nielsen, P. H., and
Consortium, M. G. (2022).
Midas 4: A global catalogue of full-length 16s rrna gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants.
Nature Communications, 13(1):1908. - Goodacre et al., 2018
-
Goodacre, N., Aljanahi, A., Nandakumar, S., Mikailov, M., and Khan, A. S.
(2018).
A reference viral database (rvdb) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection.
MSphere, 3(2):e00069-18. - Gupta et al., 2014
-
Gupta, S. K., Padmanabhan, B. R., Diene, S. M., Lopez-Rojas, R., Kempf, M.,
Landraud, L., and Rolain, J.-M. (2014).
Arg-annot, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes.
Antimicrobial agents and chemotherapy, 58(1):212-220. - Gurbich et al., 2023
-
Gurbich, T. A., Almeida, A., Beracochea, M., Burdett, T., Burgin, J., Cochrane,
G., Raj, S., Richardson, L., Rogers, A. B., Sakharova, E., Salazar, G. A.,
and Finn, R. D. (2023).
Mgnify genomes: A resource for biome-specific microbial genome catalogues.
Journal of Molecular Biology, 435(14):168016.
Computation Resources for Molecular Biology. - Hasman et al., 2013
-
Hasman, H., Saputra, D., Sicheritz-Ponten, T., Lund, O., Svendsen, C. A.,
Frimodt-Møller, N., and Aarestrup, F. M. (2013).
Rapid whole genome sequencing for the detection and characterization of microorganisms directly from clinical samples.
Journal of clinical microbiology, pages JCM-02452. - Kõljalg et al., 2020
-
Kõljalg, U., Nilsson, H. R., Schigel, D., Tedersoo, L., Larsson, K.-H.,
May, T. W., Taylor, A. F. S., Jeppesen, T. S., Frøslev, T. G., Lindahl,
B. D., Põldmaa, K., Saar, I., Suija, A., Savchenko, A., Yatsiuk, I.,
Adojaan, K., Ivanov, F., Piirmann, T., Pöhönen, R., Zirk, A., and
Abarenkov, K. (2020).
The taxon hypothesis paradigm - on the unambiguous detection and communication of taxa.
Microorganisms, 8(12). - Kaas et al., 2014
-
Kaas, R. S., Leekitcharoenphon, P., Aarestrup, F. M., and Lund, O. (2014).
Solving the problem of comparing whole bacterial genomes across different sequencing platforms.
PLOS ONE. - Kaminski et al., 2015
-
Kaminski, J., Gibson, M. K., Franzosa, E. A., Segata, N., Dantas, G., and
Huttenhower, C. (2015).
High-specificity targeted functional profiling in microbial communities with shortbred.
PLoS Comput. Biol. - Kang et al., 2015
-
Kang, D., Froula, J., Egan, R., and Wang, Z. (2015).
Metabat, an efficient tool for accurately reconstructing single genomes from complex microbial communities.
PeerJ, 3:e1165. - Kelley and Salzberg, 2010
-
Kelley, D. and Salzberg, S. (2010).
Clustering metagenomic sequences with interpolated markov models.
BMC Bioinformatics, 11:544. - Larsen et al., 2014
-
Larsen, M. V., Cosentino, S., Lukjancenko, O., Saputra, D., Rasmussen, S.,
Hasman, H., Sicheritz-Pontén, T., Aarestrup, F. M., Ussery, D. W., and
Lund, O. (2014).
Benchmarking of methods for genomic taxonomy.
Journal of clinical microbiology, 52(5):1529-1539. - McDonald et al., 2022
-
McDonald, D., Jiang, Y., Balaban, M., Cantrell, K., Zhu, Q., Gonzalez, A.,
Morton, J. T., Nicolaou, G., Parks, D. H., Karst, S., et al. (2022).
Greengenes2 enables a shared data universe for microbiome studies.
bioRxiv, pages 2022-12. - Narayan et al., 2020
-
Narayan, N. R., Weinmaier, T., Laserna-Mendieta, E. J., Claesson, M. J.,
Shanahan, F., Dabbagh, K., Iwai, S., and DeSantis, T. Z. (2020).
Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences.
BMC Genomics, 21(1):56. - Nearing et al., 2022
-
Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K.,
Allward, N., Jones, C. M., Wright, R. J., Dhanani, A. S., Comeau, A. M.,
et al. (2022).
Microbiome differential abundance methods produce different results across 38 datasets.
Nature communications, 13(1):342. - Quast et al., 2012
-
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O. (2012).
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Nucleic Acids Research, 41(D1):D590-D596. - Sedlar et al., 2017
-
Sedlar, K., Kupkova, K., and Provaznik, I. (2017).
Bioinformatics strategies for taxonomy independent binning and visualization of sequences in shotgun metagenomics.
Computational Structural Biotechnology Journal, 15:48-55. - Van Embden et al., 2000
-
Van Embden, J., Van Gorkom, T., Kremer, K., Jansen, R., Van der Zeijst, B., and
Schouls, L. (2000).
Genetic variation and evolutionary origin of the direct repeat locus of mycobacterium tuberculosis complex bacteria.
Journal of bacteriology, 182(9):2393-2401. - WHO, 2023
-
WHO (2023).
Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance, second edition.
World Health Organization, Geneva. - Ye and Doak, 2009
-
Ye, Y. and Doak, T. G. (2009).
A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes.
PLoS Computational Biology, 5(8):e1000465. - Zankari et al., 2017
-
Zankari, E., Allesï¿12e, R., Joensen, K. G., Cavaco, L. M., Lund, O., and
Aarestrup, F. M. (2017).
Pointfinder: a novel web tool for wgs-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens.
Journal of Antimicrobial Chemotherapy, 72(10):2764-68.
https://doi.org/10.1093/jac/dkx217.