Bibliography

Anderson, 2001
Anderson, M. (2001).
A new method for non-parametric multivariate analysis of variance.
Austral Ecology, 26(1):32-46.

Callahan et al., 2016
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., and Holmes, S. P. (2016).
Dada2: High resolution sample inference from illumina amplicon data repository.
Nature Methods, 13:581-583.

Caspi et al., 2019
Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., and Karp, P. D. (2019).
The MetaCyc database of metabolic pathways and enzymes - a 2019 update.
Nucleic Acids Research, 48(D1):D445-D453.

Chen et al., 2012
Chen, J., Bittinger, K., Charlson, E. S., Hoffmann, C., Lewis, J., Wu, G. D., Collman, R. G., Bushman, F. D., and Li, H. (2012).
Associating microbiome composition with environmental covariates using generalized unifrac distances.
Bioinformatics, 28(16):2106-13.

Couvin et al., 2020
Couvin, D., Segretier, W., Stattner, E., and Rastogi, N. (2020).
Novel methods included in spollineages tool for fast and precise prediction of mycobacterium tuberculosis complex spoligotype families.
Database, 2020:baaa108.

Curry et al., 2022
Curry, K. D., Wang, Q., Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S., Wu, Q., Graeber, E., Finzer, P., Mendling, W., et al. (2022).
Emu: species-level microbial community profiling of full-length 16s rrna oxford nanopore sequencing data.
Nature methods, 19(7):845-853.

Douglas et al., 2020
Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., and Langille, M. G. I. (2020).
PICRUSt2 for prediction of metagenome functions.
Nature Biotechnology, 38(6):685-688.

Dueholm et al., 2022
Dueholm, M. K. D., Nierychlo, M., Andersen, K. S., Rudkjøbing, V., Knutsson, S., Arriaga, S., Bakke, R., Boon, N., Bux, F., Christensson, M., Chua, A. S. M., Curtis, T. P., Cytryn, E., Erijman, L., Etchebehere, C., Fatta-Kassinos, D., Frigon, D., Garcia-Chaves, M. C., Gu, A. Z., Horn, H., Jenkins, D., Kreuzinger, N., Kumari, S., Lanham, A., Law, Y., Leiknes, T., Morgenroth, E., Muszynski, A., Petrovski, S., Pijuan, M., Pillai, S. B., Reis, M. A. M., Rong, Q., Rossetti, S., Seviour, R., Tooker, N., Vainio, P., van Loosdrecht, M., Vikraman, R., Wanner, J., Weissbrodt, D., Wen, X., Zhang, T., Nielsen, P. H., Albertsen, M., Nielsen, P. H., and Consortium, M. G. (2022).
Midas 4: A global catalogue of full-length 16s rrna gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants.
Nature Communications, 13(1):1908.

Goodacre et al., 2018
Goodacre, N., Aljanahi, A., Nandakumar, S., Mikailov, M., and Khan, A. S. (2018).
A reference viral database (rvdb) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection.
MSphere, 3(2):e00069-18.

Gupta et al., 2014
Gupta, S. K., Padmanabhan, B. R., Diene, S. M., Lopez-Rojas, R., Kempf, M., Landraud, L., and Rolain, J.-M. (2014).
Arg-annot, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes.
Antimicrobial agents and chemotherapy, 58(1):212-220.

Gurbich et al., 2023
Gurbich, T. A., Almeida, A., Beracochea, M., Burdett, T., Burgin, J., Cochrane, G., Raj, S., Richardson, L., Rogers, A. B., Sakharova, E., Salazar, G. A., and Finn, R. D. (2023).
Mgnify genomes: A resource for biome-specific microbial genome catalogues.
Journal of Molecular Biology, 435(14):168016.
Computation Resources for Molecular Biology.

Hasman et al., 2013
Hasman, H., Saputra, D., Sicheritz-Ponten, T., Lund, O., Svendsen, C. A., Frimodt-Møller, N., and Aarestrup, F. M. (2013).
Rapid whole genome sequencing for the detection and characterization of microorganisms directly from clinical samples.
Journal of clinical microbiology, pages JCM-02452.

Kõljalg et al., 2020
Kõljalg, U., Nilsson, H. R., Schigel, D., Tedersoo, L., Larsson, K.-H., May, T. W., Taylor, A. F. S., Jeppesen, T. S., Frøslev, T. G., Lindahl, B. D., Põldmaa, K., Saar, I., Suija, A., Savchenko, A., Yatsiuk, I., Adojaan, K., Ivanov, F., Piirmann, T., Pöhönen, R., Zirk, A., and Abarenkov, K. (2020).
The taxon hypothesis paradigm - on the unambiguous detection and communication of taxa.
Microorganisms, 8(12).

Kaas et al., 2014
Kaas, R. S., Leekitcharoenphon, P., Aarestrup, F. M., and Lund, O. (2014).
Solving the problem of comparing whole bacterial genomes across different sequencing platforms.
PLOS ONE.

Kaminski et al., 2015
Kaminski, J., Gibson, M. K., Franzosa, E. A., Segata, N., Dantas, G., and Huttenhower, C. (2015).
High-specificity targeted functional profiling in microbial communities with shortbred.
PLoS Comput. Biol.

Kang et al., 2015
Kang, D., Froula, J., Egan, R., and Wang, Z. (2015).
Metabat, an efficient tool for accurately reconstructing single genomes from complex microbial communities.
PeerJ, 3:e1165.

Kelley and Salzberg, 2010
Kelley, D. and Salzberg, S. (2010).
Clustering metagenomic sequences with interpolated markov models.
BMC Bioinformatics, 11:544.

Larsen et al., 2014
Larsen, M. V., Cosentino, S., Lukjancenko, O., Saputra, D., Rasmussen, S., Hasman, H., Sicheritz-Pontén, T., Aarestrup, F. M., Ussery, D. W., and Lund, O. (2014).
Benchmarking of methods for genomic taxonomy.
Journal of clinical microbiology, 52(5):1529-1539.

McDonald et al., 2022
McDonald, D., Jiang, Y., Balaban, M., Cantrell, K., Zhu, Q., Gonzalez, A., Morton, J. T., Nicolaou, G., Parks, D. H., Karst, S., et al. (2022).
Greengenes2 enables a shared data universe for microbiome studies.
bioRxiv, pages 2022-12.

Narayan et al., 2020
Narayan, N. R., Weinmaier, T., Laserna-Mendieta, E. J., Claesson, M. J., Shanahan, F., Dabbagh, K., Iwai, S., and DeSantis, T. Z. (2020).
Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences.
BMC Genomics, 21(1):56.

Nearing et al., 2022
Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward, N., Jones, C. M., Wright, R. J., Dhanani, A. S., Comeau, A. M., et al. (2022).
Microbiome differential abundance methods produce different results across 38 datasets.
Nature communications, 13(1):342.

Quast et al., 2012
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O. (2012).
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Nucleic Acids Research, 41(D1):D590-D596.

Sedlar et al., 2017
Sedlar, K., Kupkova, K., and Provaznik, I. (2017).
Bioinformatics strategies for taxonomy independent binning and visualization of sequences in shotgun metagenomics.
Computational Structural Biotechnology Journal, 15:48-55.

Van Embden et al., 2000
Van Embden, J., Van Gorkom, T., Kremer, K., Jansen, R., Van der Zeijst, B., and Schouls, L. (2000).
Genetic variation and evolutionary origin of the direct repeat locus of mycobacterium tuberculosis complex bacteria.
Journal of bacteriology, 182(9):2393-2401.

WHO, 2023
WHO (2023).
Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance, second edition.
World Health Organization, Geneva.

Ye and Doak, 2009
Ye, Y. and Doak, T. G. (2009).
A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes.
PLoS Computational Biology, 5(8):e1000465.

Zankari et al., 2017
Zankari, E., Allesï¿12e, R., Joensen, K. G., Cavaco, L. M., Lund, O., and Aarestrup, F. M. (2017).
Pointfinder: a novel web tool for wgs-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens.
Journal of Antimicrobial Chemotherapy, 72(10):2764-68.
https://doi.org/10.1093/jac/dkx217.