Bibliography
- Abdelaal et al., 2019
-
Abdelaal, T., Michielsen, L., Cats, D., Hoogduin, D., Mei, H., Reinders, M. J.,
and Mahfouz, A. (2019).
A comparison of automatic cell identification methods for single-cell rna sequencing data.
Genome biology, 20(1):194. - Amemiya et al., 2019
-
Amemiya, H. M., Kundaje, A., and Boyle, A. P. (2019).
The encode blacklist: identification of problematic regions of the genome.
Scientific reports, 9(1):1-5. - Bakken et al., 2018
-
Bakken, T. E., Hodge, R. D., Miller, J. A., Yao, Z., Nguyen, T. N., Aevermann,
B., Barkan, E., Bertagnolli, D., Casper, T., Dee, N., et al. (2018).
Single-nucleus and single-cell transcriptomes compared in matched cortical cell types.
PloS one, 13(12):e0209648. - Bastidas-Ponce et al., 2019
-
Bastidas-Ponce, A., Tritschler, S., Dony, L., Scheibner, K., Tarquis-Medina,
M., Salinno, C., Schirge, S., Burtscher, I., Böttcher, A., Theis, F. J.,
et al. (2019).
Comprehensive single cell mrna profiling reveals a detailed roadmap for pancreatic endocrinogenesis.
Development, 146(12):dev173849. - Bentsen et al., 2020
-
Bentsen, M., Goymann, P., Schultheis, H., Klee, K., Petrova, A., Wiegandt, R.,
Fust, A., Preussner, J., Kuenne, C., Braun, T., et al. (2020).
Atac-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation.
Nature communications, 11(1):1-11. - Bergen et al., 2020
-
Bergen, V., Lange, M., Peidli, S., Wolf, F. A., and Theis, F. J. (2020).
Generalizing rna velocity to transient cell states through dynamical modeling.
Nature biotechnology, 38(12):1408-1414. - Bergen et al., 2021
-
Bergen, V., Soldatov, R. A., Kharchenko, P. V., and Theis, F. J. (2021).
Rna velocity-current challenges and future perspectives.
Molecular systems biology, 17(8):e10282. - Buenrostro et al., 2013
-
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., and Greenleaf,
W. J. (2013).
Transposition of native chromatin for multimodal regulatory analysis and personal epigenomics.
Nature methods, 10(12):1213. - Chao, 1987
-
Chao, A. (1987).
Estimating the population size for capture-recapture data with unequal catchability.
Biometrics, pages 783-791. - Chao et al., 2014
-
Chao, A., Gotelli, N. J., Hsieh, T., Sander, E. L., Ma, K., Colwell, R. K., and
Ellison, A. M. (2014).
Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies.
Ecological monographs, 84(1):45-67. - Chao et al., 2013
-
Chao, A., Wang, Y., and Jost, L. (2013).
Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species.
Methods in Ecology and Evolution, 4(11):1091-1100. - Gale and Sampson, 1995
-
Gale, W. A. and Sampson, G. (1995).
Good-turing frequency estimation without tears.
Journal of quantitative linguistics, 2(3):217-237. - Germain et al., 2020
-
Germain, P., Sonrel, A., and Robinson, M. (2020).
pipecomp, a general framework for the evaluation of computational pipelines, reveals performant single cell rna-seq preprocessing tools.
Genome Biol, 21(227). - Hafemeister and Satija, 2019
-
Hafemeister, C. and Satija, R. (2019).
Normalization and variance stabilization of single-cell rna-seq data using regularized negative binomial regression.
Genome Biol, 20(296). - Ilicic et al., 2016
-
Ilicic, T., Kim, J. K., Kolodziejczyk, A. A., Bagger, F. O., McCarthy, D. J.,
Marioni, J. C., and Teichmann, S. A. (2016).
Classification of low quality cells from single-cell RNA-seq data.
Genome biology, 17(1):1-15. - Islam et al., 2014
-
Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M.,
Lönnerberg, P., and Linnarsson, S. (2014).
Quantitative single-cell RNA-seq with unique molecular identifiers.
Nature methods, 11(2):163. - Kang et al., 2018
-
Kang, H. M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy,
E., Wan, E., Wong, S., Byrnes, L., Lanata, C. M., et al. (2018).
Multiplexed droplet single-cell rna-sequencing using natural genetic variation.
Nature biotechnology, 36(1):89. - Kobak and Berens, 2019
-
Kobak, D. and Berens, P. (2019).
The art of using t-sne for single-cell transcriptomics.
Nature communications, 10(1):1-14. - Kuchenbecker et al., 2015
-
Kuchenbecker, L., Nienen, M., Hecht, J., Neumann, A. U., Babel, N., Reinert,
K., and Robinson, P. N. (2015).
Imseq-a fast and error aware approach to immunogenetic sequence analysis.
Bioinformatics, 31(18):2963-2971. - Kulakovskiy et al., 2018
-
Kulakovskiy, I. V., Vorontsov, I. E., Yevshin, I. S., Sharipov, R. N.,
Fedorova, A. D., Rumynskiy, E. I., Medvedeva, Y. A., Magana-Mora, A., Bajic,
V. B., Papatsenko, D. A., et al. (2018).
Hocomoco: towards a complete collection of transcription factor binding models for human and mouse via large-scale chip-seq analysis.
Nucleic acids research, 46(D1):D252-D259. - La Manno et al., 2018
-
La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov,
V., Lidschreiber, K., Kastriti, M. E., Lönnerberg, P., Furlan, A., et al.
(2018).
Rna velocity of single cells.
Nature, 560(7719):494-498. - Lefranc et al., 2009
-
Lefranc, M.-P., Giudicelli, V., Ginestoux, C., Jabado-Michaloud, J., Folch, G.,
Bellahcene, F., Wu, Y., Gemrot, E., Brochet, X., Lane, J., et al. (2009).
Imgt®, the international immunogenetics information system®.
Nucleic acids research, 37(suppl_1):D1006-D1012. - Li et al., 2017
-
Li, H., Linderman, G. C., Szlam, A., Stanton, K. P., Kluger, Y., and Tygert, M.
(2017).
Algorithm 971: An implementation of a randomized algorithm for principal component analysis.
ACM Transactions on Mathematical Software (TOMS), 43(3):1-14. - Lun et al., 2019
-
Lun, A. T., Riesenfeld, S., Andrews, T., Gomes, T., Marioni, J. C., et al.
(2019).
Emptydrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data.
Genome Biology, pages 1-9. - Maaten and Hinton, 2008
-
Maaten, L. v. d. and Hinton, G. (2008).
Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579-2605. - MacParland et al., 2018
-
MacParland, S. A., Liu, J. C., Ma, X.-Z., Innes, B. T., Bartczak, A. M., Gage,
B. K., Manuel, J., Khuu, N., Echeverri, J., Linares, I., et al. (2018).
Single cell rna sequencing of human liver reveals distinct intrahepatic macrophage populations.
Nature communications, 9(1):1-21. - McInnes et al., 2018
-
McInnes, L., Healy, J., and Melville, J. (2018).
Umap: Uniform manifold approximation and projection for dimension reduction.
arXiv preprint arXiv:1802.03426. - Otsu, 1979
-
Otsu, N. (1979).
A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics, 9(1):62-66. - Parkhomchuk et al., 2009
-
Parkhomchuk, D., Borodina, T., Amstislavskiy, V., Banaru, M., Hallen, L.,
Krobitsch, S., Lehrach, H., and Soldatov, A. (2009).
Transcriptome analysis by strand-specific sequencing of complementary dna.
Nucleic Acids Res, 37(18):e123. - Platt et al., 1999
-
Platt, J. et al. (1999).
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.
Advances in large margin classifiers, 10(3):61-74. - Robinson et al., 2010
-
Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010).
edger: a bioconductor package for differential expression analysis of digital gene expression data.
Bioinformatics, 26(1):139-140. - Satopaa et al., 2011
-
Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B. (2011).
Finding a" kneedle" in a haystack: Detecting knee points in system behavior.
In 2011 31st international conference on distributed computing systems workshops, pages 166-171. IEEE. - Stoeckius et al., 2018
-
Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B. Z., Mauck,
W. M., Smibert, P., and Satija, R. (2018).
Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics.
Genome biology, 19(1):1-12. - Strino and Lappe, 2016
-
Strino, F. and Lappe, M. (2016).
Identifying peaks in*-seq data using shape information.
BMC bioinformatics, 17(5):343-361. - Taavitsainen et al., 2021
-
Taavitsainen, S., Engedal, N., Cao, S., Handle, F., Erickson, A., Prekovic, S.,
Wetterskog, D., Tolonen, T., Vuorinen, E., Kiviaho, A., et al. (2021).
Single-cell atac and rna sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse.
Nature communications, 12(1):1-16. - Traag et al., 2019
-
Traag, V. A., Waltman, L., and van Eck, N. J. (2019).
From louvain to leiden: guaranteeing well-connected communities.
Scientific reports, 9(1):1-12. - Van Der Maaten, 2014
-
Van Der Maaten, L. (2014).
Accelerating t-sne using tree-based algorithms.
The Journal of Machine Learning Research, 15(1):3221-3245. - Wattenberg et al., 2016
-
Wattenberg, M., Viï¿12gas, F., and Johnson, I. (2016).
How to use t-sne effectively.
Distill. - Xu and Su, 2015
-
Xu, C. and Su, Z. (2015).
Identification of cell types from single-cell transcriptomes using a novel clustering method.
Bioinformatics, 31(12):1974-1980.