cnv_detection

--control-mappings <ClcObjectUrl> A number of read mappings, to be used as control cases. Gender-matched controls are optimal.
--create-algorithm-report <Boolean> Create algorithm report, which contains advanced details about the statistical models used in the algorithm (default: true)
--create-target-track <Boolean> Create a target-level CNV track, containing calls for individual CNV targets (default: true)
-d, --destination <ClcServerObjectUrl> Destination file or folder on server. If not specified the folder of the first input object will be used.
--enforce-small-region-sensitivity <Boolean> Greatly increases the sensitivity of the prediction of very small CNVs, leading to a higher number of predicted CNVs, but also increasing the false positive rate. (default: false)
--gene-track <ClcObjectUrl> If given, this gene track will be used for producing gene-level CNV results.
--graining-level <[COARSE, INTERMEDIATE, FINE]> Graining level for the prediction of CNV regions (default: COARSE)
-i, --input <ClcObjectUrl> Input data on server
--ignore-broken-pairs <Boolean> Paired reads that have been broken up and mapped individually will be ignored (default: true)
--ignore-nonspecific-matches <Boolean> Reads that match in several places will be ignored (default: true)
--log <Boolean> Enable creation of algo log file. (default: true)
--low-coverage-cutoff  
Integer: 0 <= x <= 2147483647 Targets with coverage below this number will be considered low-coverage and will not be used to calculate the statistical models (default: 30)
--minimum-fold-change-magnitude  
Double: 0.0 <= x < Infinity The minimum fold-change magnitude to call a 'strong' CNV signal (default: 1.4)
--significance-level  
Double: 0.0 <= x <= 1.0 A CNV will be called if the corrected p-value is less than or equal to this value (default: 0.05)
--target-track <ClcObjectUrl> The targeted regions in the analysis