Bibliography
- Bendtsen et al., 2004
-
Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004).
Improved prediction of signal peptides: SignalP 3.0.
J Mol Biol, 340(4):783-795. - Blobel, 2000
-
Blobel, G. (2000).
Protein targeting (Nobel lecture).
Chembiochem., 1:86-102. - Hallgren et al., 2022
-
Hallgren, J., Tsirigos, K. D., Pedersen, M. D., Armenteros, J. J. A.,
Marcatili, P., Nielsen, H., Krogh, A., and Winther, O. (2022).
Deeptmhmm predicts alpha and beta transmembrane proteins using deep neural networks.
bioRxiv. - Klee and Ellis, 2005
-
Klee, E. W. and Ellis, L. B. M. (2005).
Evaluating eukaryotic secreted protein prediction.
BMC Bioinformatics, 6:256. - Krogh et al., 2001
-
Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001).
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
J Mol Biol, 305(3):567-580. - Nielsen et al., 1997
-
Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997).
Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
Protein Eng, 10(1):1-6. - Teufel et al., 2022
-
Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H.,
Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., and
Nielsen, H. (2022).
Signalp 6.0 predicts all five types of signal peptides using protein language models.
Nature Biotechnology, 40(7):1023-1025.