Bibliography

Bendtsen et al., 2004
Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004).
Improved prediction of signal peptides: SignalP 3.0.
J Mol Biol, 340(4):783-795.

Blobel, 2000
Blobel, G. (2000).
Protein targeting (Nobel lecture).
Chembiochem., 1:86-102.

Hallgren et al., 2022
Hallgren, J., Tsirigos, K. D., Pedersen, M. D., Armenteros, J. J. A., Marcatili, P., Nielsen, H., Krogh, A., and Winther, O. (2022).
Deeptmhmm predicts alpha and beta transmembrane proteins using deep neural networks.
bioRxiv.

Klee and Ellis, 2005
Klee, E. W. and Ellis, L. B. M. (2005).
Evaluating eukaryotic secreted protein prediction.
BMC Bioinformatics, 6:256.

Krogh et al., 2001
Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001).
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
J Mol Biol, 305(3):567-580.

Nielsen et al., 1997
Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997).
Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
Protein Eng, 10(1):1-6.

Teufel et al., 2022
Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. (2022).
Signalp 6.0 predicts all five types of signal peptides using protein language models.
Nature Biotechnology, 40(7):1023-1025.