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1 Introduction

This is a white paper on the de novo assembler in CLC Assembly Cell 4.0. Note that the same
algorithm is used by CLC Genomics Workbench and CLC Genomics Server, and except for the
performance benchmarks (speed and memory), this white paper applies to these products as
well.

Sequencing technologies are in continuous development with new technologies emerging, im-
provements in the sequencing quality and rapidly increasing amounts of sequencing data.
Combined with the fact that we for the last couple of years have seen a significant increase in
the number of researchers involved in next generation sequencing projects, this creates a need
for de novo assemblers which can handle extremely large amounts of data and solve the complex
task of constructing de novo assemblies from short read data. Thus, a continuous development
of de novo assemblers is crucial in order to benefit from the improved quality and quantity of
sequencing data which are becoming available today.

We are continuously developing the CLC de novo assembler and CLC Assembly Cell version 4.0
is an improvement over previous versions with better support for large data sets and integrated
scaffolding for joining contigs based on paired reads information. It is designed to accept a
combination of data from Illumina, 454, SOLID, lon Torrent and Sanger sequencing as a mix of
paired and unpaired reads which allows the qualities of different sequencing technologies to be
exploited.

The first part of this paper introduces the basics of de novo assembly as it is done in the CLC
de novo assembler while the second part presents the results of performance benchmarks. The
benchmarks cover de novo assembly of the following three genomes: E. coli, Arabidopsis thaliana
and Homo sapiens. The results of these demonstrate the CLC assembler’s ability to produce
accurate assemblies extremely fast using both standard consumer hardware and server systems.
For example, the assembly of a high coverage dataset for the A. thaliana genome is completed
in just half an hour on a quad-core laptop, while an assembly of the human genome using a 43x
coverage dataset takes just seven hours on a quad-processor system.

2 The CLC de novo assembler

CLC bio’s de novo assembly algorithm utilize de Bruijn graphs to represent overlapping reads
which is a common approach for short read de novo assembly that allows a large number of
reads to be handled efficiently [Zerbino and Birney, 2008, Li et al., 2010, Gnerre et al., 2011].

The first step in the CLC assembler is to construct a word table containing all unique subse-
quences (words) of a certain length (word size) found in the reads. Given a word in the word table,
all potential neighboring words can then be looked up as shown in Fig. 1.

Backward neighbors Starting word Forward neighbors
AACGTAGCTAGCGCAT CGTAGCTAGCGCATGA
CACGTAGCTAGCGCAT CGTAGCTAGCGCATGC

ACGTAGCTAGCGCATG
GACGTAGCTAGCGCAT CGTAGCTAGCGCATGG
TACGTAGCTAGCGCAT CGTAGCTAGCGCATGT

Figure 1: The word in the middle is 16 bases long, and it shares the 15 first bases with the
backward neighboring word and the last 15 bases with the forward neighboring words.
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Typically, only one of the backward neighbors and one of the forward neighbors will be present
in the table. A graph can then be made where nodes represent words in the table and edges
connect neighboring nodes. This is called a de Bruijn graph and building this graph is the second
step in the CLC assembler.

For genomic regions without repeats or sequencing errors, the graph contains long linear stretches
of connected nodes where each node has one backward and one forward neighbor. Such nodes
can be reduced to a single node representing subsequences longer than the initial words which
reduces the size of the graph. Figure 2 shows an example where the graph contains one node
with two forward neighbors.

//AGATACACCTCTAGGC——GATACACCTCTAGGCA
ACTAGATACACCTCTA——CTAGATACACCTCTAG——TAGATACACCTCTAGG\\
AGATACACCTCTAGGT—GATACACCTCTAGGTC

Figure 2: Three nodes connected, each sharing 15 bases with its neighboring node and ending
with two forward neighbors.

A reduction of this graph reduces the number of nodes from seven to three as shown in Fig. 3,
where the first node now represents 18 bases while the following two nodes each represent 17
bases. Note that neighboring nodes still have an overlap of 15 nucleotides since the word length
is 16.

//AGATACACCTCTAGGCA
ACTAGATACACCTCTAGG\\
AGATACACCTCTAGGTC

Figure 3: The result of merging five nodes into three nodes.

Given this way of representing the de Bruijn graph for a set of reads, we can consider some
different situations: If reads contain polymorphisms (e.g. heterozygote SNPs) or sequencing
errors, the resulting de Bruijn graph may contain bubbles as shown in Fig. 4. In this example the
bubble size is 6 and contains two ambiguities. If the bubble was caused by sequencing errors
occurring only once, one of the two paths through the bubble would originate from words observed
only once in the reads. Conversely, if the bubble was caused by one or more polymorphisms, the
words in both paths are likely to occur with similar frequencies in the reads. Thus, by storing the
frequency of each word in the word table, it becomes possible to distinguish between sequencing
errors and polymorphisms and create more accurate assemblies.

//ACAAACGGGCCCCTACATTGATTAAATCTTCTTTTG\\
ACGCACAAACGGGCCCCT\\ //TTAAATCTTCTTTTGGCT
ACAAACGGGCCCCTAGATTGTTTAAATCTTCTTTTG

Figure 4: Bubble caused by SNPs or sequencing errors.

If a repeat sequence occurs twice in a genome, the resulting graph will contain a node representing
the repeat region with the flanking regions as neighbors. An example with a 28b repeat is shown
in Fig. 5 where the length of the repeat is measured as the length of the central node plus the
identical regions of the neighboring nodes. If the repeat had been shorter than 15b, it would not
have shown up as a repeat since the word length is 16. This is an argument for using a large
word size, since longer words are able to span longer repeat regions.

CACCGCTGGTTGCCAGTCCCATCGTTC\\ //TCGGATCAGGGATTCCGTTTATCGGGG
//CCAGTCCCATCGTTCGGATCAGGGATTC\\
GTACACCTCCATCCAGTCCCATCGTTC TCGGATCAGGGATTCTCCGTCGGAGGC

Figure 5: A de Bruijn graph where the central node represents a repeat region which occurs twice
in a genome.
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The CLC assembler supports word sizes in the interval [12,64] ([12,24] on 32 bit machines) and
a suitable word size will be chosen automatically based on the amount of input data: the more
data, the larger the word size. It is also possible to manually set the word size which can help
increase the assembly accuracy in some cases as discussed in Sec. 4.

A simple de novo assembly result can be constructed by outputting the sequence of each reduced
node in the de bruijn graph. However, bubbles from sequencing errors and SNPs as well as
repeat regions cause fragmentation of the result, i.e. the output will contain many short contigs
(continuous genomic sequences) instead of a few large contigs. To improve the assembly result,
the third step in the CLC assembler use reads to further reduce the graph by resolving sections
that represents e.g. bubbles or repeats. Bubbles where one path has a significantly higher read
coverage compared to other possible paths are resolved by choosing the path with the highest
coverage. However, only bubbles where the bubble size is below a user-defined threshold will be
resolved (the default threshold is 50b). Repeat regions can often be resolved if they are spanned
by reads that have a significant overlap with two neighboring nodes. Thus, inclusion of long
reads in a de novo assembly is essential for creating an accurate assembly with long contigs.
If paired reads are available the CLC assembler will also attempt to resolve repeat regions that
are spanned by paired reads. This is done by searching for a unique path through the repeat
region containing paired reads where the distance between each read pair is within the expected
distance interval. If a section cannot be resolved, contigs are created for each node in the
section, thus the result of an assembly can contain small contigs with very similar sequences.

The fourth step of the CLC assembler performs scaffolding where paired reads spanning two
contigs are used to both estimate the distance between the contigs and determine their
orientation. Scaffolding is done using a greedy approach where the shortest gaps between
contigs are closed first. By iteratively closing the shortest gaps, long gaps may be closed using
multiple short gaps as shown in Fig. 6. After the scaffolding is completed, contigs in the same
scaffold are output as one large contig with Ns inserted in between.

i)
Figure 6: Iterative scaffolding of the shortest gaps allows long pairs to be optimally used. i1) shows
three contigs with dashed arches indicating potential scaffolding. i) is after first iteration where

the shortest gap has been closed and the long potential scaffolding has been updated. i3) is the
final result with three contigs in one scaffold.

Repeat regions in large genomes are often very complex. One specific repeat may be found
thousands of times and part of one repeat can also be part of another repeat. If a repeat is
longer than both the read length and the distance between paired reads it becomes impossible
to resolve the repeat region of the graph. This means that even with a high coverage of error free
reads, the result of an assembly will still be fragmented if long repeat regions are present.

In summary, the de novo assembly algorithm performs the following steps:
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Build a table of the words seen in the reads.

Create the de Bruijn graph using the word table.

Use reads and paired read information to resolve the graph.

e Perform scaffolding.

Output the resulting contigs and scaffolds.

3 SOLiD data support in de novo assembly

SOLiD sequencing is done in color space. When viewed in nucleotide space this means that a
single sequencing error changes the remainder of the read. An example read is shown in figure
7.

L1 1 111 I B e eaee S0 000 S0O0SRREE 208 20000
Without errors: CCAACATCCTAGAGATCCGCCTCTTAGCGGATATAATACAGCCGAAATTG
With an error: CCAACATCCTAGAGATCCGCAGAGGCTATTCGCGCCGCACTAATCCCGGT
sestee @& @ L .l.; S0 000 SOSSSREE 200 28080

Figure 7: How an error in color space leads to a phase shift and subsequent problems for the rest
of the read sequence

Basically, this color error means that C's become A’s and A’s become C’s. Likewise for G's and
T’s. For the three different types of errors, we get three different ends of the read. Along with
the correct reads, we may get four different versions of the original genome due to errors. So if
SOLID reads are just regarded in nucleotide space, we get four different contig sequences with
jumps from one to another every time there is a sequencing error.

Thus, to fully accommodate SOLID sequencing data, the special nature of the technology has to
be considered in every step of the assembly algorithm. Furthermore, SOLID reads are fairly short
and often quite error prone. Due to these issues, we have chosen not to include SOLiID support
in the first algorithm steps, but only use the SOLiID data where they have a large positive effect
on the assembly process: when applying paired information.

4 Quality trimming and parameter settings

Although the default parameter settings of the CLC assembler often result in a fairly accurate
assembly, the accuracy can sometimes be improved by changing the default word size and
bubble size parameters. Choosing optimal values for these two parameters require some
experimentation, but the average coverage, length and quality of the input reads can often be
used to guide such experiments as discussed below. Furthermore, to achieve a high accuracy
assembly, it is also important to make use of paired read information (if available) and to reduce
the number of sequencing errors in the reads using read quality trimming.

4.1 Paired read distance

Paired reads from the same library should ideally be separated by the same number of bases.
However, in reality paired distances often have a substantial variance and it is therefore necessary
to determine a distance interval in which the distances between the majority of the paired reads
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are contained. If the paired read distance is not properly chosen, paired read information may be
ignored or even cause misassemblies.

4.2 Quality trimming of reads

Sequencing data are usually annotated with quality scores (phred scores in most cases) which
indicate the probability of base-calling errors. Low quality reads, i.e. reads containing a large
number of bases with low phred scores, often lead to misassemblies or ambiguous contigs and
should be either trimmed or filtered out. The base quality will usually decrease towards the end
of each read, and a common strategy is therefore to trim away low quality bases from read
ends. The definition of a low quality base depends on the sequencing technology and it is often
necessary to experiment with different quality thresholds to strike a balance between a high read
quality and a high coverage.

4.3 Word size

A high read coverage combined with a low number of sequencing errors support a larger word size
which will help resolve repeat regions. However, if reads contain a high number of sequencing
errors, a large word size will increase the percentage of words that are affected by errors and
hereby increase the complexity of the de Bruijn graph, thus a smaller word size is recommended
in these cases. A small word size can also be an advantage if the read coverage is low or if the
read length is short as it increases the size of the word table and hereby improves the chance of
identifying overlapping words. Given a coverage of >30x and a read length of >50b the optimal
word size will usually be in the range [20, 30].

4.4 Bubble size

A high rate of systematic sequencing errors, which is for example often seen with 454 reads,
may create large bubbles in the de Bruijn graph that stretch over hundreds of bases. The CLC
assembler outputs a contig for each reduced node in bubbles larger than the bubble size, hence
if a small bubble size is used for reads containing many systematic errors, the result will be
a large number of small contigs. The bubble size can be increased manually which allows the
assembler to resolve more bubbles, but a large bubble size can also increase the chance of
misassemblies. For reads containing systematic errors, a bubble size equal to the average read
length is a good starting point but some experimentation is required to find the optimal value.

5 Quality measures

In most cases, the ideal result of a de novo assembly is a few large contigs. A common way to
measure assembly quality is therefore to compute statistics over the number and size of contigs
which indicate how many reads the assembler was able to merge. We have used the following
standard statistics to evaluate the results of the CLC de novo assembler.

#contigs The number of contigs produced. In most cases, a low number is preferred.

> |contig| The total sum of bases in all contigs. Ideally, this number should be close to the
expected size of the target sequences, i.e. the size of the target genome for whole genome
sequencing.
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N50 The N50 statistic is computed by first summing the sizes of contigs in the order largest to
smallest until the sum is > 3 >~ |contig|. The N50 value is then the size of the contig that
was last added to the sum, i.e. the smallest of the largest contigs covering 50% of the
total size of all contigs. As N50 is fairly insensitive to a large number of small contigs it is
considered a better measure of assembly quality than the average contig size.

When a reference genome is available contigs are - for the benchmarks in this white paper -
aligned to the reference using NCBI BLAST 2.2.25 [Altschul et al., 1997] with default parameter
settings. Following the approach in [Finotello et al., 2011] for evaluating de novo assembly
results, we used the BLAST search results to compute the following quality measures:

HR Hypothetical Reconstruction: The ratio between the sum of bases in all contigs and the
length of the reference.

RR Real Reconstruction: The ratio between the number of matching bases, and the reference
length where bases in overlapping alignments are only counted once. For a perfect assembly
the RR value should be 1, given that all reads map perfectly to the reference.

ER Erroneous Reconstruction: The difference between HR and RR. If all contigs align perfectly
with the reference this value is O.

Contigs of length <200b are ignored when computing the above quality measures and in cases
where BLAST returned multiple hits, only the top hit for each contig was used.

6 De novo assembly of Escherichia coli

To assess the CLC assemblers performance on small datasets, we performed de novo assemblies
for two strains of E. coli using high quality reads from three popular next generation sequencing
platforms. Illumina [lllumina, 2011] and lon Torrent reads [Technologies, 2011] from DH10B, a
substrain of the K-12 strain with a 4.69Mb genome and 454 reads [Brzuszkiewicz et al., 2011]
from 0104:H4, an enterohemorrhagic E. coli strain from the German E. coli outbreak in 2011
with an estimated genome size of 5.31Mb.

Table 1 presents statistics for each of the three E. coli datasets. Both the lllumina and lon
Torrent datasets have a high read coverage, but where the lllumina reads are all paired, the lon
Torrent reads are both paired and unpaired. The 454 dataset consists entirely of long unpaired
reads and has a relatively low read coverage compared to the lllumina and lon Torrent datasets.

Platform | lllumina MiSeq 454 FLX lon Torrent

Strain DH10B 0104:H4 DH10B
#Bases 2.18Gb 127Mb 990Mb
Avg. coverage 464x 23.9x 211X

Library type Paired-end Unpaired Mate-pair (62%)

Unpaired (38%)
Insert size 300b N/A 10Kb

Avg. read length 151b 363b 140b

Table 1: E. coli sequencing data statistics.
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6.1 Parameter settings and data preparation

To illustrate the effect of changing the default parameters of the CLC assembler as well as the
use of read quality trimming in relation to assembly accuracy, we iteratively improve assemblies of
the datasets described in Table 1 by optimising parameters. The results of these assemblies are
presented in Table 2 where the results are grouped according to the parameter being optimized.

For the initial set of assemblies, we use default parameters and ignore paired read information
and this results in numerous small contigs. HR values close to one for all datasets indicate that
the produced contigs contains enough bases to match the size of the corresponding reference
and for the lllumina and lon Torrent datasets high RR values indicate that most of the reference
has been correctly assembled. Furthermore, low ER values indicate a low number of contigs that
are not mapped to the reference, only partly mapped or overlapping with another contig. However,
the large number of contigs and the low N50 values show that the assemblies are fragmented
due to unresolved sections in the de Bruijn graph.

Paired read information enables the assembler to resolve more sections in the de Bruijn graph,
which results in fewer and longer contigs for both the lllumina and lon Torrent dataset. Paired
reads also makes it possible to perform scaffolding and in the case of the lon Torrent dataset
716 contigs are reduced to 626 scaffolds with one scaffold covering 344Kb (scaffolding results
are shown in parentheses). Because the lllumina data use a relatively short insert size, the reads
can only span short gaps. Consequently, scaffolds for the lllumina dataset are relatively small
compared to the size of the contigs produced.

In the next set of assemblies, low quality bases® have been trimmed from the read ends and
reads where the trimming resulted in a read length of <20b have been removed. By trimming the
[llumina reads, the assembler was able to find more overlapping reads and merge several contigs
which results in larger N50 values. In case of the 454 dataset, quality trimming also enabled
the assembler to merge several contigs which increases the N50 value by a factor of two. The
total contig length of the 454 dataset is also reduced by 180Kb which could indicate that quality
trimming eliminated a number of erroneous contigs. The lon Torrent dataset contains a large
number of reads where many bases have low quality scores. Quality trimming of the lon Torrent
reads therefore caused >40% of the bases to be removed even though a low quality threshold
was used. However, after trimming this dataset, the assembly accuracy is improved considerably
both in terms of N50 and ER. Notably, quality trimming allows the CLC assembler to produce a
single scaffold which spans 2.95Mb and contains contigs with a total of 2.82Mb.

Adjusting the word size and the bubble size of the CLC assembler did not affect the assembly
accuracy significantly for any of the datasets. However, because the 454 dataset contains
systematic errors, adjusting the bubble size to 300 results in a significant increase of the N50
value and reduces the total contig length to 5.26Mb which is close to the expected length of
5.31Mb.

6.2 Combining datasets

It is possible to further improve the assembly of the DH10B genome by combining the lllumina
and lon Torrent reads in an assembly. The high quality lllumina reads are well suited for building
an initial de Bruijn graph while the lon Torrent reads are perfect for both resolving the graph and

1The quality threshold for each dataset was selected experimentally as the one which gave the best overall
assembly quality.
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Dataset | #contigs ) |contig|, Mb N50, Kb HR,% RR,% ER,%
Unpaired reads with default parameters
[lumina 177 4.48 76.3 95.7 95.2 0.5
454 FLX 2,555 5.62 6.9 105.8 N/A N/A
lon Torrent 747 4.56 30.6 97.4 94.6 2.8
Use of paired information
llumina | 127 (112) 4.49 (4.49) 88.3(107.6) 95.7 95.2 0.5

454 FLX N/A N/A N/A N/JA  N/A  N/A

lon Torrent | 716 (626) 4.57 (4.69) 32.2(129.7) 97.5 94.9 2.6
Trimmed reads
lMlumina | 113 (99) 4.48 (4.49) 97.0 (107.6) 95.7 95.1 0.6
454 FLX 1326 5.44 13.6 102.4 N/A N/A
lon Torrent | 270 (136) 4.52 (4.66) 55.2 (2,950) 96.5 94.8 1.7
Word size
lllumina, 23=23 | 113 (99) 4.48 (4.49) 97.0 (107.6) 95.7 95.1 0.6

454 FLX, 20=22 1320 5.43 15.1 102.3 N/A N/A

lon Torrent, 21=21 | 270 (136) 4.52 (4.66) 55.2 (2,950) 96.5 94.8 1.7
Bubble size
lllumina, 50=50 | 113 (99) 4.48 (4.49) 97.0 (107.6) 95.7 95.1 0.6

454 FLX, 50=300 1002 5.26 25.8 99.1 N/A N/A
lon Torrent, 50=50 | 270 (136) 4.52 (4.66) 55.2(2,950) 96.5 94.8 1.7

Table 2: Results of assemblies using different parameter settings for the CLC assembler. The
first group of results are from assemblies produced with the default parameter settings of the
CLC assembler. The results in the following groups are from assemblies where parameters are
improved iteratively. x = y indicate that a parameter was changed from x to y. Where paired-read
information is available, results for scaffolding are shown in parentheses.

performing scaffolding due to the large insert size. To avoid sequencing errors in the lon Torrent
reads affecting the initial construction of the de Bruijn graph, we used the -g option of the CLC
assembler to ignore these reads when performing step 1 and 2 of the assembly process (see
Sec. 2). Quality trimming was performed for all reads and the CLC assembler was configured
to use a word size of 26 and the default bubble size of 50. An assembly with these parameter
produced 83 contigs and 26 scaffolds which is a significant reduction compared to the results
in Table 2. Accordingly, the N50 values with and without scaffolding are improved to 136Kb and
2.45Mb respectively while RR and ER values are 95.6% and 0.73% respectively. The scaffolding
N50 value is lower than the 2.95Mb achieved with the lon Torrent dataset alone, however the
better RR and ER values for the combined assembly indicate that a number of misasemblies are
made when only the lon Torrent reads are used. Hence, by combining the two datasets, the CLC
assembler is able to produce long contigs while the number of misassemblies is minimised.

6.3 Running time and memory consumption

Table 3 shows time and memory consumption of the CLC assembler when assembling reads
from the lllumina dataset on three different systems, including one laptop. On all systems, the
assembly was completed in a few minutes using less than 1GB of memory. To avoid exhausting
the memory bandwidth, only 40 of the 80 cores were used on the E7-4870 system.
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CPU | i7 2720QM (laptop) 2x Xeon X5550 4x Xeon E7-4870
Cores 8 16 80
Threads used 8 16 40
Time used 5m 12s 4m 8s 2m 25s
Peak memory 129MB 287MB 778MB

Table 3: Time and memory used by the CLC assembler on three different systems when assembling
lllumina MiSeq reads from E. coli DH10B. The numbers include scaffolding of the contigs.

7 De novo assembly of Arabidopsis thaliana

The relatively small diplod genome of A. thaliana is one of the most well studied model organisms
in plant biology and therefore well suited for benchmarking the CLC de novo assembler on a
plant genome. In a recent study [Gan et al., 2011] 18 different wild types of A. thaliana were
sequenced with the lllumina Genome Analyser (GA) and assembled using a hybrid assembly
strategy. The assembly of the reads was done by first mapping reads to the A. thaliana Col-O
reference genome followed by a de novo assembly of the reads using SOAPdenovo [Li et al.,
2010] (another de Bruijn graph based assembler) from the SOAP package to resolve e.g. regions
containing large indels.

Platform | Illumina GAIl Illumina GAllx [llumina GAlIx
#Bases 4.97Gb 3.21Gb 1.85Gb
Avg. coverage 42.2x 27.2x 15.7x
Library type | Paired-end Paired-end Unpaired
Insert size 200b 400b N/A
Avg. read length 36b 51b 51b

Table 4: A. thaliana Edi-O sequencing data statistics.

Using the dataset from [Gan et al., 2011], we have performed a de novo assembly of the A.
thaliana Edi-O strain with the CLC de novo assembler. Table 4 shows some statistics for the
dataset which contains both paired and unpaired reads and has a 85.1x average read coverage
of the 117.9Mb Edi-O reference genome published in [Gan et al., 2011].

Quality trimming of the reads did not affect the assembly accuracy, and we therefore used all
available reads as input for the CLC assembler. The high read coverage allowed the word size to
be increased from the automatically chosen value of 24 to 26 while the bubble size was reduced
to 40 due to the short read length. Table 5 presents the results for the assembly produced by
the CLC assembler together with results for the SOAP assembly used in [Gan et al., 2011]. An
alignment of the SOAP contigs against the reference was not performed as these contigs were
used to infer the Edi-O reference genome, hence such an alighment would lead to an overestimate
of the SOAP assemblers accuracy.

The CLC assembler produces fewer and longer contigs compared to the SOAP assembler which
indicates that the CLC assembler was able to resolve more regions of the de Bruijn graph.
The total length of the contigs produced by the CLC assembler and SOAP corresponds to 90%
and 99% of the Edi-O reference genome, respectively. However, by default the CLC assembler
discards all contigs shorter than 200b while SOAP only discard contigs shorter than 50b. By
setting the minimum contig length to 50b for the CLC assembler, the total contig length is
increased to 120Mb at the cost of including a massive number of small contigs. An ER value of
8.69% indicates that misassemblies have been made by the CLC assembler. however, as the
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Assembler CLC SOAPdenovo
#contigs | 26,606 (13,164) 322,757
> |contig|, Mb | 106.2 (108.1)* 117.0*
N50, Kb 14.7 (35.0) 1.9
HR, % 90.3 N/A
RR, % 81.6 N/A
ER, % 8.69 N/A

Table 5: Results for de novo assembly of A. thaliana using CLC and SOAP de novo assemblers.
Scaffolding results are shown in parentheses.
*Minimum contig length for CLC and SOAP were 200b and 50b respectively.

Edi-O reference genome is an initial draft genome it is likely to contain errors which affect the ER
value of the CLC assembler negatively.

The time and memory used by the CLC assembler to create contigs and perform the scaffolding
of these is shown in Table 6. The assembly time is measured in minutes even on the quad-core
laptop (i7 2720QM), hereby demonstrating that the CLC assembler is able to assemble fairly
large genomes on standard consumer systems efficiently.

CPU | i7 2720QM (laptop) 2x Xeon X5550 4x Xeon E7-4870
Cores 8 16 80
Threads used 8 16 40
Time used 30m 7s 17m 41s 13m 16s
Peak memory 2.8GB 2.8GB 3.2GB

Table 6: Performance of the CLC assembler on three different systems when assembling the A.
thaliana Edi-O genome using 10Gb of lllumina reads. All numbers include scaffolding of the contigs.

8 De novo assembly of Homo sapiens

To assess the performance of the CLC assembler on a large genome, we assembled the genome
of Hapmap [Gibbs et al., 2003] individual NA18507 (African male) using reads obtained from
ENA [Leinonen et al., 2011] (accession nho. ERA015743). As shown in Table 7, the dataset
contains 135Gb of paired Illlumina reads which corresponds to an average read coverage of 43.7x
for the GRCh37 reference genome. The actual sequencing was done by Illlumina and the dataset
has not previously been used in any published de novo assembly experiments to our knowledge.

Platform #Bases Avg. coverage Library type Insert size Avg. read length
[llumina GAIl 135.3Gb 43.7x Paired-end 300b 101b

Table 7: H. sapiens sequencing data statistics.

#contigs > |contig|*, Gb N50, b HR,% RR,% ER%
1,079,610 (985,587) 2.51 (2.52) 5717 (6256) 87 N/A  N/A

Table 8: Results for de novo assembly of H. sapiens using and the CLC de novo assembler.
Scaffolding results are shown in parentheses.

Quality trimming of the reads was not performed because experiments showed that it did not
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improve the assembly accuracy of the CLC assembler due to the high quality of the lllumina reads
(phred score of >Q20 for most bases). The default word size and bubble size were increased
from 26 to 32 and from 50 to 80 respectively which gave a significant increase in assembly
accuracy. The results of an assembly with these parameters are presented in Table 8. A total of
10% contigs were produced with a total length of 2.51Gb which corresponds to 87% of the known
bases in the reference genome and 81% of the total reference genome length. Values for RR and
ER are not shown because of the large computational resources needed for aligning all contigs
to the reference using BLAST.

CPU | 2x Xeon X5550 4x Xeon E7-4870
Cores 16 80
Threads used 16 40
Time used 11h 49m 7h 1m
Peak memory 45.3GB 46.9GB

Table 9: Performance of the CLC assembler on two different systems when assembling a human
genome. The numbers include scaffolding of the contigs.

Table 9 shows the time consumption and maximum memory consumption of the CLC assembler
when assembling all 135Gb reads for the NA18507 individual on two different systems. In
comparison, a de novo assembly of the same individual using 146Gb paired lllumina reads
with an average length of 36b, took 40h and required 140GB of memory with SOAP [Li et al.,
2010] on a cluster consisting of eight quad-core 2.3Ghz CPUs. The same dataset has also been
assembled using ABySS on a 168 core cluster which required 16GB of memory on each of the
23 machines in the cluster and took 3d 15h to complete [Simpson et al., 2009].

9 Conclusion

In this white paper we have introduced the CLC de novo assembler which is a part of the CLC
Assembly Cell 4.0. Benchmarks show that the computationally efficient algorithms used in the
CLC assembler enable fast de novo assembly of high coverage bacterial and eukaryotic genomes
using a laptop. Furthermore, an efficient parallelization scheme ensures full utilization of multi-
core processors, thus enabling de novo assemblies of the human genome to be completed in
seven hours using a single computer. The benchmark results also indicate that the accuracy of
the CLC assembler is similar to or better than other state of the art de novo assemblers which
are capable of handling the massive amounts of short read data produced by modern sequencing
technologies.
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