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1 Abstract
After decades of biological research relying on Sanger sequencing, massively parallel high
throughput sequencing (HTS) techniques have created a broad range of new and exciting
research applications by increasing the output sequencing data dramatically. Although allowing
for hitherto unseen DNA and RNA sequencing and binding study designs, HTS technologies
have created remarkable bioinformatic challenges. In typical resequencing studies read mappers
are used to align sequence reads to reference genomes. Read mapping, while not too time
consuming in the Sanger-century, quickly evolved into one of the most insistent bottlenecks.
Nowadays, researchers can resort to a broad range of read mapping solutions and it becomes
increasingly challenging to choose software that optimally meets given requirements. Most
demanding characteristics of read mappers include accuracy of the underlying read mapping
algorithms and computational costs of running them. But since read mapping is not any more the
expert task it was, Biologists have signaled strong interest in running analyses by themselves,
such that ease of use displays a typical requirement, too.

We here present a thorough study of the read mapping solutions included in all CLC Genomics
Workbench, CLC Genomics Server and CLC Assembly Cell products. We demonstrate convenient
use and prove both market-leading performance and accuracy in various read mapping scenarios.
Benchmarks exercised show in detail that the CLC read mapper not only maps more than 1.3
billion Illumina reads (100Nt, paired-end) in less than 5 hours, but also consistently achieves
competitive mapping accuracy even for complex read data, such these originating from the
PacBioRS system. We conclude that the CLC read mapper consistently performs neck and neck
with the market in all major disciplines and thus provides a strong basis for a broad range of
resequencing applications.

2 Introduction
In the mid-1970s Sanger and Maxam described a DNA-sequencing technology [Maxam and Gilbert,
1977,Sanger et al., 1977] termed Sanger-sequencing, that enabled for a broad range of research
topics for molecular biologists. Ever since, costs of obtaining DNA-sequences have decreased
steadily, but still displayed a major limitation. Derivations of high throughput sequencing (HTS)
technologies recently caused dramatic cost-reductions and thus created an even broader range
of exciting sequencing applications [Bosch and Grody, 2008]. And while sequencing platform
vendors engaged themselves in a race for the 1000$ human genome [Service, 2006], output
volumes of their HTS instruments kept stalling most hitherto bioinformatic tools and pipelines.
Bioinformaticians and algorithmicians have consequently revised their strategy from developing
accurate solutions to developing solutions that can cope with the data volumes in the first place,
to overcome momentous bottlenecks present in many sequencing scenarios. Mapping sequence
reads to their respective reference genome is one of those bottlenecks and has evolved to a
major of its own.

The traditional Smith-Waterman algorithm (SW) [Smith and Waterman, 1981] is well described to
always find the optimal alignment between a pair of sequences and is thus considered the most
accurate alignment algorithm available. However, the algorithmic complexity of SW is too high
to efficiently align millions of sequences to large reference genomes, such as the human or the
murine. In contrast, heuristic algorithms, such as BLAST [Altschul et al., 1990] and BLAT [Kent,
2002], sacrifice some accuracy to gain dramatic performance improvements in return. Instead
of exploring the reference genome entirely, heuristics index reference genomes in a way that
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enables for quick discovery of candidate alignment locations (CAL), which are then thoroughly
examined by SW. Consequently, the accuracy of these heuristics is hinging on whether the correct
alignment location in the reference genome is discovered among all CAL, such that the accuracy
greatly varies depending on the implemented CAL-discovery method.

To obviate resulting inaccuracies, significant attempts were undertaken to revert to SW by taking
advantage of massive parallel computing (MPC) on graphics processing units (GPUs) [Liu et al.,
2009] or field-programmable gate arrays (FPGAs) (Convey Computer1, 2012) that were found
to outperform standard computing platforms by one to two orders of magnitude. Once more,
rapidly evolving HTS techniques overwhelmed all these approaches, which were not only unable
to cope with the dramatically increased sequence volumes emitted by HTS instruments, but also
lacked technical requirements, such as full gapped SW alignment, support for paired-end reads
or color-space encoded sequences. To keep pace, sequence alignment models were, again,
rigorously redesigned to exploit two key technologies, namely (1) a Suffix Array (SA) [Manber and
Myers, 1993] that represents a reference genome and permits extremely time-efficient discovery
of CAL and (2) the Burrows-Wheeler Transformation [Burrows et al., 1994] to compress the SA
that would otherwise consume 16 times the space the original representation of the reference
genome consumes. However, derived accelerations didn’t come cheap as these next generation
read mapping algorithms typically implement even coarser CAL-discovery heuristics, such as the
maximal exact match (MEM) approach [Khan et al., 2009]. Consequently, modern read mapper
implementations are routinely subjected to critical benchmarking to conclude on appropriate
balancing between execution performance and according accuracy.

CLC bio offers high-performance read mapping solutions as part of CLC Genomics Workbench,
CLC Genomics Server and CLC Assembly Cell. Workbench and Server products integrate powerful
bioinformatic tools under a unified graphical user interface. In contrast, CLC Assembly Cell is
a high-performance computing product line dedicated to users versed in operating software at
the command line level. It is the purpose of both product lines to solve complex bioinformatic
tasks, such as de-novo and reference assemblies, the latter nowadays better known as Read
Mapping. In 2012, CLC bio introduced a read mapping algorithm that implemented the MEM
approach, and the 2012 issue of this white paper concluded that this read mapper was superior
to its predecessor in all disciplines, but consumed significantly more memory. This drawback
was removed in the current memory-efficient read mapper version. This white paper is dedicated
to a comparison of both the previous and the memory-efficient read mapper versions along with
some of the most popular open-source read mappers, BWA, Bowtie2 and SMALT (see section
8.4). Overall, we distinguish three benchmarks:

1. Performance Benchmark of CLC Genomics Workbench/Server. Mapping reads to a target
genome is considered the very first step to make sense out of resequencing data. However,
sorting raw mapping results by chromosomal mapping coordinates is an obligatory post-
processing step to enable visualization or further downstream analysis, such as variation
calling. This benchmark assesses the overall user experience of mapping reads to a
reference genome by measuring and comparing the processing times spent on the entire
end-to-end read mapping process, and during individual sub-processes.

1 http://www.conveycomputer.com/Resources/Convey_Announces_Record_Breaking_Smith_
Waterman_Acceleration.pdf

http://www.conveycomputer.com/Resources/Convey_Announces_Record_Breaking_Smith_Waterman_Acceleration.pdf
http://www.conveycomputer.com/Resources/Convey_Announces_Record_Breaking_Smith_Waterman_Acceleration.pdf
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2. Computational Resource Requirements of CLC Assembly Cell. Running software generally
occupies computer memory and consumes processing time. These two metrics are referred
to as computational expenses and read mapping is considered computationally expensive.
To evaluate computational requirements necessary to achieve performances measured in
the first benchmark, this second benchmark assesses resource consumption by real-time
monitoring read mappers during execution.

3. Accuracy Benchmark of CLC Assembly Cell. Smith-Waterman based sequence aligners
are considered to always discover optimal alignment results, while modern read mapping
implementations follow heuristic approaches that trade some accuracy for performance. To
value read mapping performances, this benchmark assesses and compares the losses of
accuracy by comparing heuristic mapping results to optimal results obtained from a purely
Smith-Waterman based read mapper.

Each of the three benchmarks were exercised using four different human data sets (see section
8.5) from four different sequencing platforms and were run on identical hardware (see section
8.6) to create thorough and informative benchmarks.

Platform Reads Protocol Mean length
Illumina Genome Analyzer II 1,339,740,542 paired-end 101
Roche 454-Titanium 2,801,862 single-end 569
Life Technologies Ion Torrent 11,660,934 single-end 251
PacBioRS 1,702,801 single-end 555

Table 1: Overview of sample data sets. (see also section 8.5)

3 Performance Benchmark of CLC Genomics Workbench/Server

Among a broad range of bioinformatic tasks, mapping sequence reads to reference genomes
doubtlessly plays a central role in CLC Genomics Workbench/Server products. Nonetheless,
read mapping is typically just the first milestone along the way of digesting actual insight from
sequenced cancer samples, family members or even a thousand individuals. In fact, variation
calling upon high throughput sequencing (HTS) data has gained intense interest during the
past decade and is currently considered the second milestone in many resequencing pipelines.
To identify differences between samples, variation callers first compare individual samples
separately to the reference genome and then intersect, subtract or otherwise compare resulting
variation calls to discover inter-sample variations. For technical reasons, all variation callers
require sequence mapping data to be sorted by reference genome coordinates. Since HTS
instruments output sequencing reads in arbitrary order and read mappers maintain this order
while deriving read mappings, sorting mapping results is obligatory. Sequence reads and read
mapping data often display huge data volumes, such that sorting these data entities renders
a computationally expensive operation, substantially contributing to the overall performance
experienced by the user.

Another significant contribution to overall performance is displayed by data transfer operations.
In many cases, HTS data is stored in dedicated storage facilities and have to be transferred to
compute facilities on demand. Shoveling hundreds of gigabytes of sequencing data, as output by
Illumina HiSeq instruments within just a single run, to a compute node that executes the actual
read mapping, and analogously returning resulting mapping data to the storage facility, can easily
contribute hours.
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In fact, mapping sequence reads to a reference genome involves a three stage pipeline. In detail
these are:

1. pre-processing

(a) Raw sequence and reference genome data is copied to the compute nodes’ local
storage system. This is typically necessary, because high volume HTS data is mostly
stored in storage units maintained by compute facilities. Also, in client/server setups,
input data has to be transferred to the local storage of the compute nodes carrying
out the read mapping.

(b) The reference genome is then indexed. CLC mappers recreate the reference index for
every read mapping run to enable high flexibility, e.g when using de-novo assemblies
as reference genome. Building the index takes approx. 7 minutes for the full human
genome (roughly 15 mins. on a standard laptop with a quad-core CPU). Identical
Indexes, once created, are locally cached (on the grid-worker storage) to enforce
maximum throughput for batching of small samples, such as amplicon data sets, in
large reference genomes.

(c) In the case of paired-end sequencing data, pre-processing also includes the automated
assessment of the fragment size distribution by pre-mapping a representative subset
of the original read pairs.

2. read-mapping A read mapper aligns input reads individually (or in pairs) to the reference
genome and reports one or more mapping result per read (or read-pair) for downstream
processing.

3. post-processing

(a) The entirety of all derived mapping results are sorted by reference alignment coor-
dinates to enable efficient visualization and to meet requirements of downstream
analysis tools.

(b) A mapping report is generated to communicate typical read mapping statistics, such as
amounts and lengths of reads and references, but also details about reference genome
coverage, zero-coverage regions, range of observed alignment identities, amounts of
alternative mapping locations per read (mapping specificity), exact fragment size
distributions in paired-end data sets, and so on.

(c) Corresponding to step 1a, all result data is transferred to the storage unit.

Since the entirety of all three stages should be seen as one inseparable operation, all versions of
CLC Genomics Workbench/Server streamline individual steps within a single integrated workflow.
Overall runtimes of this read mapping workflow were measured for CLC Genomics Workbench
7.0, CLC Genomics Workbench 7.5, BWA, Bowtie2 and SMALT. Each read mapper pipeline was
benchmarked upon the four sample data sets (see section 8.5) and runtimes were compiled into
figures 1, 2, 3 and 4. As expected, benchmarks of the read mapping workflows implemented in
CLC Genomics Workbench 7.0 (GxWb7.0) and CLC Genomics Workbench 7.5 (GxWb7.5) show no
significant difference, since the only anticipated difference is reduced main-memory consumption
(see section 6).
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Mapper total preprocess mapping postprocess
GxWb7.0 11:55:47 1:31:10 4:13:49 6:10:48
GxWb7.5 11:20:35 1:16:41 3:58:43 6:05:11
BWA 13:52:24 0:50:28 9:42:37 3:19:19
Bowtie2 24:13:42 0:50:28 20:03:55 3:19:19
SMALT 41:16:29 0:50:28 37:06:42 3:19:19

Figure 1: Runtime measurements for the Illumina sample. The left subplot (a) indicates the total
processing time, whereas the right subplot (b) shows only runtimes of pre- and post-processing, explicitly
excluding the mapping runtime itself. Tabled runtimes are given in HH:MM:SS. Timings were individually
measured for CLC Genomics Workbench 7.0 (GxWb7.0), CLC Genomics Workbench 7.5 (GxWb7.5) and for
the open-source mappers BWA, Bowtie2 and SMALT.

Mapper total preprocess mapping postprocess
GxWb7.0 0:30:19 0:01:20 0:26:03 0:02:56
GxWb7.5 0:25:44 0:01:02 0:21:56 0:02:46
BWA 0:09:40 0:00:33 0:07:44 0:01:23
Bowtie2 0:34:47 0:00:33 0:32:51 0:01:23
SMALT 0:59:42 0:00:33 0:57:46 0:01:23

Figure 2: Runtime measurements for the 454-Titanium sample.
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Mapper total preprocess mapping postprocess
GxWb7.0 0:37:43 0:01:34 0:30:15 0:05:54
GxWb7.5 0:32:28 0:01:38 0:25:44 0:05:06
BWA 0:18:48 0:01:00 0:14:16 0:03:32
Bowtie2 0:28:36 0:01:00 0:24:04 0:03:32
SMALT 0:58:35 0:01:00 0:54:03 0:03:32

Figure 3: Runtime measurements for the Ion Torrent sample.

Mapper total preprocess mapping postprocess
GxWb7.0 1:47:00 0:00:52 1:44:12 0:01:56
GxWb7.5 1:47:16 0:00:54 1:44:27 0:01:55
BWA 0:05:36 0:00:20 0:04:42 0:00:34
Bowtie2 0:16:34 0:00:20 0:15:40 0:00:34
SMALT 1:20:21 0:00:20 1:19:27 0:00:34

Figure 4: Runtime measurements for the PacBioRS sample.
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Mapping pipelines based on open-source read mappers BWA, Bowtie2 and SMALT lack the
convenience of CLC Genomics Workbench/Server products, since none of them performs any of
the aforementioned pre- or post-processing steps implicitly. Therefore transferal of read data and
sorting, as well as storing of mapping data was carried out manually. Reference indexes were
precreated (prior to benchmarking) and mapping report generation was entirely skipped. Still,
CLC Genomics Workbench 7.5 performs by far the quickest for the Illumina paired-end data set
comprising 1.34 billion paired-end reads - an amount that roughly corresponds to what recent
Illumina HiSeq instruments emit in few days (Illumina, 2, 2012). CLC Genomics Workbench
7.5 performs competitively fast for the other samples, except for the PacBioRS sample, which
naturally raises additional questions: what about computational resource requirements, and what
about accuracy of mapping results?

4 Computational Resource Requirements of CLC Assembly Cell

Running software generally consumes processing time and occupies computer memory. These
two metrics are referred to as the major computational expenses and aligning sequence reads
to large reference genomes, such as the human or the murine, is considered computationally
expensive. Overall runtimes of the three-stage mapping workflow, yielding immediately useable
mapping data, were evaluated in section 3 and it was shown that the read mapping itself accounts
for a major runtime portion of the described mapping workflow. It is therefore the purpose of this
chapter to exactly assess overall computational requirements of running employed read mappers
and to justify these by providing mapping statistics.

For the sake of clarity, it shall be mentioned that all CLC Genomics Workbench/Server products
share identical core read mapping modules, such that mapping results and resource requirements
measured here are identical for all products of the same generation. Table 2 provides an overview
of CLC product lines and their major version numbers marking the transition from the old to the
new read mapper.

Product line Latest version with Earliest version with
old read mapper new read mapper

CLC Assembly Cell 4.2 5.0
CLC Genomics Server 6.0 6.5
CLC Genomics Workbench 7.0 7.5

Table 2: CLC product lines and employed default read mapper implementations. (see also section 8.4).

To compare computational requirements, resource consumptions were assessed for both the
previous CLC Assembly Cell 4.2 (CLC4) and the recently released CLC Assembly Cell 5.0 (CLC5)
along with the open-source read mappers BWA, Bowtie2 and SMALT. As CLC bio provides general
purpose software for various user groups, especially also addressing non-technicians, part of CLC
bio’s efforts spent on software development is the automagic identification of optimal parameter
settings where possible. As outlined in section 2, performance is negatively correlated to accuracy
provided a fixed yet tunable implementation, i.e. the more a fixed implementation is tuned for
accuracy, the slower it gets and vice versa. For simplicity, no attempts were undertaken to tune
any of the mapper implementations in any of the benchmarks exercised, neither for speed nor
for accuracy. Each read mapper was benchmarked upon the four sample data sets (see section
8.5) and benchmark results were summarized in figures 5, 6, 7 and 8.

2http://www.illumina.com/systems/hiseq_systems.ilmn

http://www.illumina.com/systems/hiseq_systems.ilmn
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Mapper unmapped paired unpaired user time cpu time mem. load cpu load
CLC4 0.66% 91.71% 7.64% 4:12:36 128:10:14 15.48 3,029%
CLC5 0.54% 91.79% 7.67% 3:45:29 119:06:50 2.88 3,167%
BWA 0.29% 97.77% 1.95% 9:42:37 189:57:14 7.85 1,964%
Bowtie2 1.19% 97.37% 1.44% 20:03:55 617:52:36 4.53 3,137%
SMALT 0.04% 94.96% 5.00% 37:06:42 1138:23:23 13.87 3,069%

Figure 5: Resource statistics for the Illumina sample (total reads: 1,339,740,542). Left plot (A) shows a
mapping statistics summary: recovery rate reflects the percentage of reads of total that were successfully
mapped as concordant pair or as broken pair; mapping scores give the percentage of reads that were
mapped with a score higher than the given relative score threshold, where relative scores calculate as:
absolute score / read length in nucleotides. Middle plot (B) summarizes runtime measurements: user time
refers to the real time that was spent until the entire data set was processed; CPU time gives the total
cumulative processor time consumed (table values in [H]H:MM:SS). Right plot (C) presents resource loads:
memory usage (table values in Gigabyte) reflects the peak and (arithmetic) mean memory consumptions
observed (table shows means only); CPU load indicates the peak and (arithmetic) mean processor loads
in 0 - 3200 % according to 32 threads (table shows means only). Resource metrics were individually
measured for CLC Assembly Cell 4.2 (CLC4), CLC Assembly Cell 5.0 (CLC5) and for the open-source mappers
BWA, Bowtie2 and SMALT.

Mapper unmapped mapped user time cpu time mem. load cpu load
CLC4 11.52% 88.48% 0:09:54 4:59:37 16.61 2,832%
CLC5 9.83% 90.17% 0:13:29 7:08:19 3.69 3,106%
BWA 0.25% 99.75% 0:07:44 3:17:27 6.25 2,570%
Bowtie2 2.18% 97.82% 0:32:51 17:14:34 9.61 3,101%
SMALT 0.19% 99.81% 0:57:46 29:29:12 6.24 2,923%

Figure 6: Resource statistics for the 454-Titanium sample (total reads: 2,801,862).
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Mapper unmapped mapped user time cpu time mem. load cpu load
CLC4 1.87% 98.13% 0:14:06 7:14:42 15.36 2,939%
CLC5 1.57% 98.43% 0:17:39 9:10:03 2.94 3,019%
BWA 1.16% 98.84% 0:14:16 5:47:05 6.58 2,445%
Bowtie2 2.07% 97.93% 0:24:04 12:37:43 3.93 3,105%
SMALT 0.17% 99.83% 0:54:03 27:36:44 4.94 3,039%

Figure 7: Resource statistics for the Ion Torrent sample (total reads: 11,660,934).

Mapper unmapped mapped user time cpu time mem. load cpu load
CLC4 48.08% 51.92% 1:28:15 45:23:16 16.56 3,019%
CLC5 45.81% 54.19% 1:35:28 50:44:07 3.89 3,176%
BWA 33.20% 66.80% 0:04:42 1:53:57 6.71 2,281%
Bowtie2 62.47% 37.53% 0:15:40 07:49:03 15.59 2,587%
SMALT 3.64% 96.36% 1:19:27 41:30:38 6.91 3,128%

Figure 8: Resource statistics for the PacBioRS sample (total reads: 1,702,801).

As already indicated in section 3, mapping statistics generated here confirm that the memory-
efficient read mapping module introduced in CLC Assembly Cell 5.0 (CLC5) does not notably
differ from the previous one in CLC Assembly Cell 4.2 (CLC4). In fact, the entire benchmark
shows almost identical results for the two versions except for the memory consumption that was
reduced from approx. 16 Gb in CLC4 to less than 4 Gb in CLC5. Where CLC4 employed an
uncompressed Suffix Array as underlying index structure for the reference genome, CLC5 uses
the Burrows-Wheeler transformation to build a FM-index [Ferragina and Manzini, 2000, Ferragina
and Manzini, 2005] of the reference genome (see also section 6). While this seems to be a
technical detail, the practical impact is significant; with CLC5, it is possible to create the index
for a large reference genome, such as the human, in as little as 15 minutes on a standard
laptop with no more than 4 processor cores and 8 Gb of RAM. Once the FM-index is created, it
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consumes even less, in the case of the human genome less than 3 Gb. Consequently, CLC5
can be run on a standard laptop, which becomes increasingly attractive with growing amounts
of cores made available in desktop processors. Note that the measured resource requirements
apply analogously to all CLC products, since the core read mapping module is shared by CLC
Genomics Workbench 7.5, CLC Genomics Server 6.5 and CLC Assembly Cell 5.0, such that all CLC
products take advantage of the reduced memory footprint in CLC5.

Comparing both CLC read mapping implementations to the open-source tools BWA, Bowtie2, and
SMALT confirms the hugely superior performance of CLC5 for the Illumina sample. Yet, CLC5
runs notably longer for the PacBioRS data set. Here, specifically BWA is by far the fastest (see
figure 8, subplot (B.a)) recovering more than 65% of all reads (see figure 8, subplot (A.a)).
Bowtie2 delivers solid accuracy and has become considerably faster since it left its beta-phase.
In contrast, SMALT has a tendency towards long runtimes, peaking for the Illumina sample, but
justifies the additional hours by reporting more than 90% of all PacBioRS reads mapped. Careful
inspection of the mapping statistics uncover a few peculiarities: CLC read mappers report more
broken paired reads (see figure 5, table column unpaired), which is due to a conscious decision
as to which criteria two reads of a pair have to satisfy to be mapped as a pair as opposed to
being mapped as a broken pair to two different reference positions. While assumptions resulting
in this decision are clearly of contrary nature, it is ultimately up to downstream analysis tools to
interpret mapping results, including information about broken pairs, in the context of biological
relevance. Furthermore, CLC read mappers seem to report fewer alignments at very low relative
scores, which is best observed in the 454-Titanium and the PacBioRS samples, where CLC5
reports notably fewer mapped reads than SMALT and BWA (see figures 6, and 8, see subplots
(A.b)). In the case of imperfectly aligning reads, read mappers have to decide whether or not to
report an alignment based on some minimum alignment quality thresholds, such as alignment
identity (termed similarity) or minimum amount of read-nucleotides comprised by the alignment
(termed length-fraction). This decision is again based on purely theoretical assumptions and
might differ from read mapper to read mapper. For CLC read mappers these thresholds are more
strict, which ultimately results in fewer reads reported to align at very low alignment scores. Note
that amounts of reads aligned at relative scores higher than 50% do not notably differ.

To conclude, this benchmark shows in detail that CLC5 performs identically to CLC4 with regard
to accuracy, but with a significantly reduced memory footprint. However, though not to withdraw,
mapping statistics provided in this section can only give indications as to how accurate read
mappers actually perform. In fact, it is almost irresponsible to conclude on accuracy based on
overly simplifying metrics, such as amounts of mapped reads or nucleotides. Consequently, the
ultimate question remains: if CLC bio is lightening fast, and runs on a laptop - what about true
accuracy metrics?

5 Accuracy Benchmark of CLC Assembly Cell

Assessing read mapping accuracy is required, because modern read mappers avoid performing a
full Smith-Waterman (SW) alignment that, on the one hand, always generates perfect alignments,
is, on the other hand, computationally too expensive to map billions of reads to large reference
genomes. However, read mappers do not fully avoid SW, but utilize index data structures
representing the reference genome to predetermine candidate alignment locations (CAL) that
are eventually fully explored by SW. This results in a dramatic speed up, because SW needs to
be performed only for the previously identified CAL, i.e. narrow regions, instead of the entire
reference genome. Unfortunately, success of this approach is only guaranteed as long as
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sequence reads align perfectly to the reference genome. As soon as sequence reads contain
sequencing errors or true variations, mapping accuracy is affected, because the heuristic step of
identifying CAL is no longer guaranteed to discover the true alignment location among the false
positive CAL. Thus, the accuracy of a read mapper strongly relies on the capability of identifying
the true alignment location among all CAL, especially in the presence of sequencing errors or
variations. Importantly, sequences that do in fact contain true variations are precisely those
of most interest in many resequencing scenarios, such as research of genetic diseases. It is
therefore absolutely essential that read mappers implement a reasonable CAL heuristic.

The previous sections focused on assessing performance metrics and computational require-
ments. It was shown that the read mapper implementation recently released as part of CLC
Assembly Cell 5.0 (CLC5), CLC Genomics Workbench 7.5 and CLC Genomics Server 6.5 has a
significantly smaller memory footprint than its predecessor CLC4, but performs as fast. Some
accuracy indicators were also presented, but it is still to be shown that accuracy hasn’t suffered.
Thus, the benchmarks presented in this section conclusively measure mapping accuracy.

Assessing accuracy is, however, difficult in itself: various commercial and academic benchmarks
have based their accuracy assessments on simulated reads that were extracted from a reference
genome, then slightly altered according to estimated error modes of various sequencing platforms
and finally mapped back to the reference genome. Accuracy was ultimately described as the
proportion of reads that could be mapped back to the original reference genome position in
spite of simulated sequencing errors. At least two major flaws of such an approach was recently
discussed ( [Holtgrewe et al., 2011]): first off, simulating reads by extracting small regions
from a reference genome and introducing artificial errors requires exact knowledge of the error-
modes produced by the targeted sequencing platform to generate representative error patterns;
and second, even if generation of such data set succeeds, it is neither guaranteed that the
original reference origin of a simulated read bearing simulated errors is still the best in terms of
sequence similarity nor that it is the only alignment location, e.g. in case the simulated read was
coincidentally taken from a repetitive element.

Accuracy assessments in this benchmark are thus based on a more sophisticated approach
that was similarly described in the Holtgrewe manuscript: Four subsets of the original four
data sets (see section 8.5) that only consist of sequence reads that imperfectly align to the
reference genome were sampled. This was primarily done, because perfect sequence reads
containing no errors at all are very often observed in Illumina data sets and to a lesser extend
in Ion Torrent, 454-Titanium and PacBioRS data. However, accuracy assessments using perfectly
aligning sequences is inconclusive, since accuracy is a matter of identifying the true alignment
location among the candidate alignment locations in presence of errors or variations. As opposed
to simulated reads, the four resulting complex data subsets comprise genuine reads bearing
platform-specific error profiles. Golden-standard mapping results were produced for these complex
subsets by using a special read mapper implementation that skips identification of CAL and
immediately performs full SW upon the entire reference genome instead. The heuristic read
mappers then mapped these four complex data subsets, too, and mapping results for individual
reads were compared to the golden-standard. Finally, accuracy was measured as proportion of
reads that were aligned optimally by the heuristic mappers, where the alignment score was used
as an underlying metric to judge whether or not an alignment was optimal, ultimately rendering a
strong and comprehensible benchmark. CLC4 and CLC5 were used in this benchmark, especially
to prove accuracy of CLC5, despite its reduced memory footprint. To summarize, the basic
assumption of this accuracy benchmark is that SW always identifies the optimal alignment and
that therefore no heuristic read mapper can ever discover an alignment that is more optimal in
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Mapper mapped optimal FDR opt 50% opt 60% opt 70% opt 80% opt 90%
CLC SW 100.00% 100.00% 0.00% 8.02% 17.06% 24.35% 28.96% 15.38%
CLC4 95.57% 64.59% 32.42% 3.32% 7.83% 14.07% 23.89% 14.43%
CLC5 96.47% 64.94% 32.68% 3.32% 7.83% 14.07% 23.89% 14.43%
BWA 96.36% 72.03% 25.24% 3.19% 8.72% 16.95% 26.58% 15.15%
Bowtie2 88.96% 60.41% 32.09% 2.56% 6.42% 12.78% 23.83% 14.48%
SMALT 99.73% 83.93% 15.84% 4.73% 12.43% 21.20% 27.89% 15.11%

Figure 9: Accuracy statistics for the Illumina subsample (total reads: 100,000). Six subplots (A-F)
present cross-comparisons of Smith-Waterman (SW) based mapping results and mapping results of five
heuristic read mappers, where subplot (A) compares SW-based mapping results to themselves to provide
reference shapes. Each subplot consists of a central scatterplot and two histograms nearby the axes.
The histograms along the x-axes show percentages of reads mapped by SW at alignment scores indicated
by the main x-axes. Y-scalings of these histograms are given at the right lower corners of each subplot.
Similarly histograms along the y-axes show percentages of reads mapped by the actual read mappers at
alignment scores indicated by the main y-axes. Y-scalings of those histograms are given at the upper left
corners of the subplots. The central scatterplots correlate relative alignment scores for each individual
read and thus contain 100,000 dots according to the total number of reads. To represent dots piling up
at identical scatterplot-coordinates, a smoothed density profile was added. All plots are based on relative
alignment scores, which are calculated as quotient of absolute alignment score divided by absolute read
length in nucleotides. The table supplements the plots by denoting the number of mapped reads, the total
number of optimal mappings and the resulting false discovery rate (FDR) (see section 8.3 for definitions).
Similarly to FACS-gating, amounts of optimal alignments were assessed in 10%-intervals (see dotted
verticals in plots) of SW-scores. All values given in the table are percent of total reads. Accuracy metrics
were individually measured for CLC Assembly Cell 4.2 (CLC4), CLC Assembly Cell 5.0 (CLC5) and for the
open-source mappers BWA, Bowtie2 and SMALT.
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Mapper mapped optimal FDR opt 50% opt 60% opt 70% opt 80% opt 90%
CLC SW 100.00% 100.00% 0.00% 5.36% 7.92% 14.29% 40.45% 13.81%
CLC4 87.04% 86.13% 1.04% 5.21% 7.79% 14.19% 40.34% 13.78%
CLC5 88.92% 87.94% 1.11% 5.21% 7.79% 14.19% 40.34% 13.78%
BWA 99.64% 96.09% 3.57% 5.16% 7.71% 14.12% 40.33% 13.80%
Bowtie2 97.16% 91.82% 5.49% 4.91% 7.38% 13.69% 39.82% 13.70%
SMALT 99.80% 91.99% 7.83% 4.64% 7.06% 13.34% 39.46% 13.64%

Figure 10: Accuracy statistics for the 454-Titanium subsample (total reads: 100,000).

the sense that it scores higher. However, read mappers can indeed report alignments scoring
lower than the SW-based alignment, which certainly has to be interpreted as a failed attempt to
discover the optimal alignment.

Comparing mappers to the golden-standard results suggests at least three populations: amounts
of optimal alignments, amounts of suboptimal alignments and amounts of unmapped reads.
Certainly, the higher the amount of optimally aligned reads, the better. In contrast, the higher
the amounts of suboptimal alignments, the worse. Unmapped reads, however, must be ignored
at least to some extend, because read mappers may decide to not report a specific alignment
corresponding to some minimum alignment criteria. Still, it is clearly a mistake to not report an
alignment for a read that is proven by SW to align with a close-to-maximum score. In general, the
higher the reported SW-score, the more serious is the mistake of a mapper to report a suboptimal
alignment or even none at all, indicating that the read mapper suppresses SW-exploration of too
many CAL, has a bad CAL prioritization or does not discover promising CAL, at all. Hence, it
does not matter, whether a read is in fact unmapped or suboptimally mapped, since both cases
indicate that the CAL heuristic failed. Figures 9, 10, 11 and 12 are designed to easily spot these
weaknesses. The higher the SW-based alignment score for an individual read, the more to the
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Mapper mapped optimal FDR opt 50% opt 60% opt 70% opt 80% opt 90%
CLC SW 100.00% 100.00% 0.00% 7.05% 12.17% 20.77% 36.99% 14.73%
CLC4 97.33% 93.97% 3.46% 6.30% 11.46% 20.29% 36.65% 14.66%
CLC5 97.97% 94.51% 3.53% 6.30% 11.46% 20.29% 36.65% 14.66%
BWA 98.92% 96.44% 2.51% 6.49% 11.80% 20.59% 36.91% 14.71%
Bowtie2 97.73% 93.84% 3.98% 6.10% 11.29% 20.28% 36.51% 14.61%
SMALT 99.93% 96.93% 3.01% 6.43% 11.72% 20.63% 36.92% 14.72%

Figure 11: Accuracy statistics for the Ion Torrent subsample (total reads: 100,000).

right the according dot appears in the scattered plot. The lower the mapper-based score reported
for that read, the more to the bottom the dot is located, and in the extreme case of no reported
alignment, the dot appears exactly on the x-axis. In contrast, dots corresponding to optimally
aligned reads are located on the first diagonal as perfectly resembled in subplots (A). Similarly
to FACS-gating, amounts of optimal and suboptimal alignments were assessed in 10%-gates of
SW-scores. To recapitulate, read mappers have to be considered the more inaccurate, the fewer
optimally aligned reads they report, most importantly in the right-most gates.

Accuracy results yielded upon the Illumina sample show that CLC4 and CLC5 perform virtually
identical and differ only marginally from the open-source mappers. BWA benefits significantly
from its new MEM-implementation, allowing short Illumina reads to be mapped in local mode,
too. Bowtie2 retained its accuracy despite the acceleration it gained since leaving beta-stage,
and SMALT impresses with a very low FDR.

The 454-Titanium and Ion Torrent based samples were very accurately mapped by all mappers.
Had it not been for the strong minimum alignment criteria that force the CLC mappers to discard
more reads below the 50% score threshold than the other read mappers, there were virtually no
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Mapper mapped optimal FDR opt 20% opt 30% opt 40% opt 50% opt 60%
CLC SW 100.00% 100.00% 0.00% 16.90% 15.84% 13.12% 7.52% 1.83%
CLC4 49.74% 46.47% 6.57% 9.35% 12.47% 11.95% 7.18% 1.78%
CLC5 51.43% 47.82% 7.03% 10.04% 12.79% 12.01% 7.18% 1.78%
BWA 67.34% 59.60% 11.50% 11.33% 12.31% 11.81% 7.17% 1.78%
Bowtie2 35.66% 33.71% 5.47% 5.52% 7.44% 8.91% 6.26% 1.66%
SMALT 98.78% 73.57% 25.52% 13.25% 13.67% 12.33% 7.33% 1.80%

Figure 12: Accuracy statistics for the PacBioRS subsample (total reads: 100,000).

differences (see figures 10 and 11).

The PacBioRS sample flips the scenery (see figure 12). SMALT must be awarded the leading
position in terms of accuracy, despite it is the slowest implementation overall. BWA achieves
the second best result being the fasted at the same time. CLC4 and CLC5 perform equally well,
but owing to comparatively strong minimum alignment criteria, worse than the aforementioned.
Similarly, but to a greater extend, Bowtie2 trails behind with the standard parameters applied
here.

To summarize, CLC5 generates as accurate results as its predecessor CLC4 throughout all
sample types and benchmark categories. Even more, all benchmarks indicate that CLC5 remains
among the best read mappers on the market, especially considering that CLC5 automagically
adapts to arbitrary error-modes of any kind with out user guidance and produces consistently
reliable results across all data types.
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6 Algorithmic Details
The implementations of the read mappers underlying CLC4 and CLC5 do not vary greatly and still
CLC5 is a major upgrade. Thus, this chapter discusses some of the major algorithm details to
provide a basis for a better understanding of peculiarities observed.

CLC Assembly Cell 4.2 (CLC4) is based on an uncompressed Suffix-Array (SA) representing the
entire reference genome in a single data structure. The algorithm iterates over input reads and
maps each read individually by applying the following procedure: initially, the longest stretches
of matching base pairs between reference genome and read are determined by considering each
base position of the read as the start position of a seed candidate. End-positions of seeds
are determined by elongating seed candidates as long as they are identical to the reference.
This approach is well examined and known as maximal exact match (MEM) [Khan et al., 2009].
Resulting seeds are maintained in a list of seeds that might overlap each other, but may not
include each other. After all possible seeds for a read are found, the list of resulting seeds is
prioritized by descending length and read offset. Finally, a maximum of 100 seeds is examined
in detail using a banded Smith-Waterman algorithm. Memory consumption of CLC4 is bounded
from below by 5 ⇤N , where N equals the size of the reference genome, such that the SA of the
human genome (approx. length: 3 GBases) consumes 15 GBytes of main memory. Whilst such a
requirement might appear inconsiderate, it allows for very fast index creation, which is a defining
goal when maintaining flexibility with respect to hard-masking or otherwise altering the reference
genome, for example when mapping reads back to de-novo assembly with thousands of contigs.
Reducing the memory footprint of CLC4 can be achieved by Burrows-Wheeler transforming the
SA and thus creating a FM-Index [Ferragina and Manzini, 2000, Ferragina and Manzini, 2005]
of the reference genome. This transformation is computationally expensive and is very hard
to parallelize. For comparison, constructing the SA takes roughly 10 minutes, constructing the
FM-index takes both BWA and Bowtie2 more than 90 minutes.

CLC Assembly Cell 5.0 (CLC5) uses the exact same alignment strategy as CLC4. Neither seeding
nor subsequent extension phase were changed significantly, rendering resulting mappings
essentially identical. However, rather than using a memory-intensive SA, CLC5 in fact employs
a Burrows-Wheeler transformation of the reference genome. The previously described Burrows-
Wheeler algorithm [Burrows et al., 1994] is based on the transformation of the concatenation of
all chromosomes of a reference genome as one long string. In contrast, CLC5 parallelizes the
transformation of individual chromosomes and subsequently merges the transformations. On a
large server with 24 processor cores all human chromosomes are transformed in parallel and
then merged into a single index. On smaller laptops the number of chromosomes transformed
in parallel is initially determined by the number of processor cores, and then additionally limited
by the amount of main memory available. If a laptop has only enough memory to transform two
chromosomes in parallel, then only two transformations will be carried out at a time, i.e. only
two processor cores will be used. This algorithm allows CLC5 to construct the FM-index for the
human genome in roughly 5 minutes on a server (with 16 core and 32Gb of memory) and in 15
minutes on a laptop (4 cores and 8Gb of memory).
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7 Conclusions
This white paper compares the previous to the improved read mapping solution underlying all
CLC bio products, and correlates results to solutions provided by the academic community.

Initial benchmarks showed a significant reduction of main memory (RAM) required in CLC
Genomics Workbench 7.5 and CLC Genomics Server 6.5 during mapping of sequence reads to
large reference genomes, such as the human or the murine. Retained convenience and ease
of use were demonstrated in many regards: a single integrated workflow takes all necessary
steps to provide read mapping results directly re-usable in downstream analyses, and implicitly
generates mapping reports. These reports provide detailed information about the input data sets,
and describe in great detail the metric traits of the yielded mapping results.

CLC Assembly Cell comprises command line versions of the read mapping solutions underlying CLC
Genomics Workbench/Server. Computational resource consumptions were assessed by real-time
monitoring individual read mappers during execution. Subsequent evaluations demonstrated that
the new read mapper scales even better with multi-processor machines. Required main memory
was shown to be greatly reduced to an amount that is typically available in standard laptops. This
enables read mapping, as implemented in CLC Genomics Workbench 7.5 and CLC Assembly Cell
5.0, to be performed on small machines, specifically for small samples, where processor power
is of secondary interest.

Finally, strong accuracy metrics were developed and CLC Assembly Cell was critically benchmarked
upon these. It was shown that mapping accuracy of CLC5 is, despite its superior performance
and reduced resource consumption, neck and neck with its predecessor CLC4 for all sequencing
technologies. To this end, CLC5 can serve as a drop-in replacement for CLC4, even more as
command line interfaces are identical. CLC Genomics Workbench 7.5 and CLC Genomics Server
6.5 take implicit advantage of the improvements as CLC5 underlies all CLC bio products.

To ultimately conclude: accuracy of biologically relevant conclusions derived from sequencing
data strongly hinge on accurate read mapping being the initial step in resequencing pipelines.
This white paper conclusively demonstrated that CLC Genomics Workbench 7.5, CLC Genomics
Server 6.5, and CLC Assembly Cell 5.0 have the technological capabilities to handle sequence
reads from any of the current sequencing platforms and in conjunction with large reference
genomes, such as the human. All CLC bio products are available for all major platforms, including
Linux/Unix, OS X, and especially Microsoft Windows R� both x86 and x64.

8 Materials & Methods

8.1 Performance Benchmark of CLC Genomics Workbench/Server

Runtimes were measured for CLC Genomics Workbench 7.0, CLC Genomics Workbench 7.5 as
well as for the open-source read mappers BWA, Bowtie2 and SMALT. Since the latter do not
implicitly undertake any of the described pre- or post-processing steps, copying of data sets was
carried out using bash commands. SAMtools v0.1.19 [Li et al., 2009] were employed to sort and
index raw mapping results. Since this step is the same for all employed open-source mappers,
only postprocessing Bowtie2 results was benchmarked and results were identically included in
benchmarks of all three open-source mappers, such that timings tabled in figures 1, 2, 3 and 4
are congruent.

Prior to mapping reads against reference genomes, read mappers typically require generation of
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indexes of the reference sequences. CLC read mappers create these indexes on the fly, when
the read mapping is executed. For BWA, Bowtie2 and SMALT prebuilding of indexes is required,
which was carried out upfront and was explicitly excluded from the runtime measurements in this
benchmark.

BWA comes in three different flavors, though BWA authors recommend BWA-MEM for data sets
used here.3 BWA-MEM was therefore used for all data sets.

8.2 Computational Resource Requirements of CLC Assembly Cell

To measure typical computational expenses the four sample data sets were mapped against
the human reference genome using CLC Assembly Cell 4.2, CLC Assembly Cell 5.0 as well as
the open-source read mappers BWA, Bowtie2 and SMALT. Since read mapper processes are
neither expected to finish quickly nor to change their memory requirements very dynamically,
real-time process profiling using genuine profiling solutions, such as Valgrind or OProfile, was
neither necessary nor desired, since these can cause significant computational overheads by
themselves. Instead, repeated calls to the unix-command ps were used to assess computational
costs of executing the read mappers. To automate monitoring and yield a profile of resource
consumptions, a bash-based wrapper script was implemented that supports to invoke a read
mapper and to monitor its resource consumptions by repetitively calling ps. Amongst others, the
wrapper script assessed the following metrics every 10 seconds and wrote them to a log-file for
later evaluation:

• elapsed user time (= real time) since the monitored process was started

• cumulative CPU time of the monitored process

• current cpu utilization of the monitored process

• non-swapped physical memory consumption of the monitored process

Besides computational expenses basic mapping statistics were assessed upon the results
derived per sample and read mapper. Since comparison of mapping results is per se challenging,
scoring schemes of employed read mappers were adjusted to resemble match (+1), mismatch
(-2) and gap/deletion (-3) rewards. No further attempts were made to tune any of the mapper
implementations in any of the benchmarks exercised, neither for speed nor for accuracy. In fact
all mappers were benchmarked using standard parameter settings except for those to specify
and describe input data. This certainly includes settings to indicate the correct encoding scheme
for base quality scores and the fragment-sizes (0 to 1,000 Nt) for paired-end data.

8.3 Accuracy Benchmark of CLC Assembly Cell

Benchmarking accuracy using sequences that perfectly align to the reference genome is incon-
clusive, since accuracy is a matter of identifying the true alignment location among the candidate
alignment locations in presence of errors or variations. Complex data subsets, i.e. data sets that
only contain reads that do not trivially align to the reference genome, had thus to be created.
To this end, original data sets were initially mapped using CLC Assembly Cell 4.2 in global
alignment mode, requiring minimum alignment criteria of 98% similarity (aka. identity) and 98%

3see FAQ section on http://http://bio-bwa.sourceforge.net

http://http://bio-bwa.sourceforge.net
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length-fraction (portion of the read that is covered by the alignment). Reads that were reported
unmapped according to above minimum alignment criteria, were subsequently extracted from the
original input files, if their length was greater than 50 Nt. Of those, 100,000 reads per original
sample were saved to four separate FASTQ files, representing complex data subsets used in the
accuracy benchmarks. Listing 7 outlines the described workflow.

To discover the optimal alignments for those complex sequence reads, a special read mapper
implementation was used that employs a full, gapped Smith-Waterman (SW) algorithm and
supports aligning reads to the entire human reference genome. This SW-implementation achieves
a performance of around 650 GCUPS on a machine with 32 physical Intel-cores and thus supports
to map each of the four complex data subsets within one to five days. The four subsets were then
mapped using the actual read mappers and yielded alignment scores were per read compared to
the respective SW-scores. To guarantee fair comparisons, scoring schemes of all mappers were
adapted to resemble match (+1), mismatch (-2) and gap/deletion (-3) rewards. To exclude biasing
alignment refinements and /or prioritization, base-quality scores were stripped from the FASTQ,
in fact by converting them to FASTA files. Moreover, all samples were mapped in single-end
mode, specifically the originally paired-end Illumina sample, too. Pairwise score comparisons
were finally inspected using descriptive statistics. Any read reported with an alignment score

• of 0 was interpreted as an unmapped read and thus counted as a failed attempt to identify
the optimal alignment, because SW always returns an alignment.

• lower than the according SW-score was interpreted as a sub-optimally aligned read and thus
counted as a failed attempt to identity the optimal alignment, because SW is by definition
always right.

• equal to the SW-score was interpreted as an optimal alignment, no matter where in the
reference genome this alignment was located, because the term ’optimal’ refers to the
highest possible alignment score.

• higher than SW-score was interpreted as an super-optimal alignment, which certainly never
happened, because SW always finds the highest score.

In formal terms of sensitivity and specificity the following definitions were applied:

• FN: unmapped reads, because SW always reports an alignment (false negatives).

• TN: always 0, because SW always reports an alignment for every read (true negatives).

• FP: reads mapped with a suboptimal score compared to SW (false positives).

• TP: reads mapped with an optimal score compared to SW (true positives).

Calculating a specificity as opposed to sensitivity is obviously not useful, because TN is always
0. Instead accuracy (ACC) and false discovery rate (FDR) are calculated:

ACC =
TP + TN

TP + TN + FP + FN

=
TP

total reads

FDR =
FP

FP + TP

=
TP

P

=
TP

mapped reads
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8.4 Read Mappers

Statically compiled Linux-x64 binaries of the following read mappers were used throughout all
analyses. Were binaries were not directly available for download, GCC 4.4.7 was used to build
them on CLC Genomics Machine (see section 8.6).

Mapper Version Abbreviation Reference / Notes
CLC Assembly Cell 4.22.107091 CLC4 also included in

CLC Genomics Workbench 7.0 and
CLC Genomics Server 6.0

CLC Assembly Cell 5.00.105852 CLC5 also included in
CLC Genomics Workbench 7.5 and
CLC Genomics Server 6.5

BWA 0.7.9 BWA [Li and Durbin, 2009]
Bowtie2 2.2.2 Bowtie2 [Langmead and Salzberg, 2012]
SMALT 0.7.5 SMALT unpublished4

Table 3: Overview of read mapper versions employed for benchmarking.

8.5 Data Sets

Publicly available sample data sets sequenced from human DNA were used for all evaluations and
benchmarks. Read data were downloaded from the source webpages in raw FASTQ format and
individual lanes/chips/cells were concatenated to ease handling throughout the benchmarks.
Neither quality trimming nor any other data preprocessing was applied to any of the data sets.

platform units src read count read length volume
Illumina Genome Analzer II 25 lanes 5 669,870,271 100/102 Nt 136 GB
Roche 454-Titanium 2 flow cells 67 2,801,862 569 Nt 1.6 GB
Life Technologies Ion Torrent 2 Ion318 chips 8 11,660,934 251 Nt 2.89 GB
PacBioRs 8 C1-SRMT cells 9 1,702,801 555 Nt 0.95 GB

Table 4: Sample data sets.

The following human reference genome was used to map reads:

Species Homo Sapiens
Assembly version GRCh37 (HG19)
Source UCSC10

Chromosomes chr1-chr22, chrX, chrY, chrM (butï¿1
2not chrUn)

Table 5: Reference genome specification.

4http://www.sanger.ac.uk/resources/software/smalt/
5http://www.ebi.ac.uk/ena/data/view/ERP000460
6http://www.ebi.ac.uk/ena/data/view/SRR003161
7http://www.ebi.ac.uk/ena/data/view/SRR003162
8http://ioncommunity.lifetechnologies.com/docs/DOC-2162
9http://www.smrtcommunity.com/Share/Datasets/HapMap-Broad

10http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz

http://www.sanger.ac.uk/resources/software/smalt/
http://www.ebi.ac.uk/ena/data/view/ERP000460
http://www.ebi.ac.uk/ena/data/view/SRR003161
http://www.ebi.ac.uk/ena/data/view/SRR003162
http://ioncommunity.lifetechnologies.com/docs/DOC-2162
http://www.smrtcommunity.com/Share/Datasets/HapMap-Broad
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
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8.6 Benchmarking Hardware

All evaluations and benchmarks were executed on a dedicated CLC Genomics Machine.

processors 2x Intel E5-2650ï¿1
2@ 2.00 GHz

total physical cores 16
total logical cores 32
main memory 64 Gbyte
internal storage LSI-RAID5 of SATA-disks (6x 3TB)
operating system CentOS 6.5 amd64
kernel version Linux 2.6.32.x86_64

Table 6: Hardware specifications of CLC Genomics Machine.

8.7 bash related

The following section provides code listings to document exact parameter settings used through-
out the various benchmarks.

1 # BWA
2 bwa index �p hg19 �a bwtsw hg19 . fa &> hg19 . log
3 # Bowtie2
4 bowtie2�bu i ld�s �f hg19 . fa hg19 &> hg19 . log
5 # SMALT
6 smalt index �k 13 �s 6 hg19 hg19 . fa &> hg19 . log

Listing 1: Creating reference genome indexes for open-source mappers.

1 # s i ng l e�end
2 clc_mapper ��cpus 32 ��re fe rences hg19 . fa ��reads i n . fq ��output out . cas
3 # pai red�end
4 clc_mapper ��cpus 32 ��re fe rences hg19 . fa ��reads �p fb ss 1 1000 � i in_1 . fq in_2 . fq ��output

out . cas

Listing 2: Mapping reads using CLC Assembly Cell 4.2

1 # s i ng l e�end
2 clc_mapper_beta ��cpus 32 ��re fe rences hg19 . fa ��reads i n . fq ��output out . cas
3 # pai red�end
4 clc_mapper_beta ��cpus 32 ��re fe rences hg19 . fa ��reads �p fb ss 1 1000 � i in_1 . fq in_2 . fq ��

output out . cas

Listing 3: Mapping reads using CLC Assembly Cell 5.0

1 # s i ng l e�end
2 bwa mem �t 32 �A 1 �B 2 �O 0 �E 3 �L 0 hg19 i n . fq > out .sam
3 # pai red�end
4 bwa mem �t 32 �A 1 �B 2 �O 0 �E 3 �L 0 hg19 in_1 . fq in_2 . fq > out .sam

Listing 4: Mapping short reads using BWA
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1 # s i ng l e�end
2 bowtie2�a l i gn�s ��threads 32 ��phred33�quals ��l o ca l ��ma 1 ��mp 2 ��rdg 0,3 ��r f g 0,3 �x hg19

i n . fq > out .sam
3 #pai red�end
4 bowtie2�a l i gn�s ��threads 32 ��phred33�quals ��l o ca l ��ma 1 ��mp 2 ��rdg 0,3 ��r f g 0,3 �x hg19

��minins 0 ��maxins 1000 �1 in_1 . fq �2 in_2 . fq > out .sam

Listing 5: Mapping short reads using Bowtie2

1 # s i ng l e�end ( i n ve r se grep to s t r i p ’# ’� s t y l e d comments from s tdou t )
2 smalt map �n 32 �f sam �O �S match=1, subst=�2,gapopen=�3,gapext=�3 hg19 i n . fq | grep �v ’^# ’ >

out . sam
3 # pai red�end ( i n ve r se grep to s t r i p ’# ’� s t y l e d comments from s tdou t )
4 smalt map �n 32 �f sam �O �S match=1, subst=�2,gapopen=�3,gapext=�3 � j 0 � i 1000 hg19 in_1 . fq

in_2 . fq | grep �v ’^# ’ > out . sam

Listing 6: Mapping short reads using SMALT

1 # map reads r e q u i r i n g 98\% s i m i l a r i t y and 98\% length�f r a c t i o n
2 clc_mapper_ legacy � l 0.98 �s 0.98 �a g l oba l �d hg19 . fa �q i n . fq �o out . cas
3 # e x t r a c t reads t ha t f a i l e d to a l i g n accord ing to above c o n s t r a i n t s
4 clc_unmapped_reads �a out . cas �o complex_input . fq � l 50
5 # of those , save 100000 reads
6 head complex_input . fq �n 400000 > complex_subset . fq

Listing 7: Creating a complex data subset using CLC Assembly Cell 4.2

1 clc_mapper_sw ��cpus 80 �s 0.0 �d hg19 . fa �q i n . fa �o out . cas

Listing 8: Mapping reads using Smith-Waterman
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