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Abstract

In this white paper, we present the Copy Number Variant (CNV) detection tool, available in
the Biomedical Genomics Workbench from version 2.1 and above. We outline the algorithm
implemented in the tool, and present accuracy benchmarks comparing the tool to state-of-
the-art methods. Our results show that the CNV detection tool is capable of highly accurate
identification of copy number variations in a broad range of next-generation sequencing data,
achieving a gene-level detection sensitivity of 200% in nearly all our benchmarks. An added
advantage of the CNV detection tool is that it is an in-built functionality of the Biomedical
Genomics Workbench, so the results can be visualized and interpreted together with the
read mappings and the results of other tools. We conclude that the CNV detection tool is
a versatile and accurate method for the identification of copy number variants in NGS data,
and it has the potential to provide valuable insights in basic medical research, as well as
translational clinical settings.
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1 Introduction

Copy number variations (CNVs) are a common
class of structural alterations in the genome,
where sections of the genome are deleted or
duplicated compared to a reference set. CNVs
can range from about 50 bases to several
megabases in size, and CNVs greater than
1 kilobase account for most bases that vary
among human genomes [1]. Some of this vari-
ation is benign, but CNVs have also been impli-
cated in many diseases, including cancer, inher-
ited disorders, cardiovascular disease, autism
and schizophrenia [2-4].

Traditionally, CNVs have been identified using
array technologies, such as comparative ge-
nomic hybridization (CGH) [5]. With the rapidly
increasing adoption of next-generation sequenc-
ing (NGS) technologies for the detection of ge-
nomic variants, there is an emerging need to
identify CNVs from NGS-based data. Several
approaches have focused on whole-genome se-
quencing (WGS) data (see [6] for a review),
but targeted resequencing (TR) remains the
most cost-effective strategy to identify disease-
causing variants.

The identification of CNVs from TR data carries
a unique set of challenges. The targeted regions
are small, typically only 100-300 bp. The ge-
nomic coverage is sparse and non-contiguous,
making it highly unlikely that the breakpoints
are covered by reads. Approaches developed
for WGS data are therefore unsuitable for de-
tecting CNVs from TR data, and utilizing com-
parative depth-of-coverage remains the most
widely used strategy in currently existing CNV
detection tools.

Depth-of-coverage methods are based on count-
ing the number of reads that cover each tar-
geted region. Due to the variability of target
coverages, affected by issues such as GC con-
tent bias or the mappability of reads, most
state-of-the-art methods require a set of con-
trol samples. After normalization to correct for
varying library sizes, statistical inferences are
made on the ratio of the coverages in the case
sample and the control samples.

It is difficult to evaluate the performance of CNV
tools, particularly because a true "gold stan-
dard" reference list does not exist for CNVs [8].
The high number of predicted CNVs and the
high rate of false positive calls by state-of-the-
art methods also makes the biological experi-
mental validation of CNVs unrealistic [7]. In this
benchmarking effort, we used a range of biologi-
cal datasets with known copy number variations
to evaluate the sensitivity and specificity of the
CNV detection tool in the Biomedical Genomics
Workbench.

1.1 Aims for the CNV detection tool

The purpose of the CNV detection tool in the
Biomedical Genomics Workbench is to identify
copy number variants in the following types of
targeted resequencing data:

1. Whole-exome sequencing
2. NGS data from hybridization-capture and
amplicon-based gene panels

1.2 Requirements for the CNV detection
tool

The CNV detection tool has the following re-
quirements:

1. Mapped NGS reads both for the case
sample and one or more control samples

2. The list of non-overlapping targeted re-
gions

The statistical models are most accurate when
a large number of targets are available.

2 A brief overview of the statisti-
cal model

The CNV detection tool is based on an analysis
of the coverage depth in the case sample in
comparison to a baseline generated from the
control samples. The generation of the base-
line is described in Section 3.1. The base-level
coverages of the case and baseline are first nor-
malized to account for varying library sizes (see
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Section 3.2). Every target is then characterized
by the average log-coverage in the case sample
and in the baseline. The log-ratio of these cov-
erages is the non-adjusted target-level log-ratio,
which is subsequently corrected for coverage
bias (see Section 3.3). The resulting quantity
is the adjusted target-level log-ratio, which we
simply refer to as the log-ratio, X;, for target i.

The log-ratios vary from target to target, caused
both by statistical noise and variations due to
"true" CNVs. In a simple approach, we can
model the log-ratio for target ¢ with a normal
distribution:

X; ~ N(0,02) (1)

where the variance, o2 (a measure for the sta-
tistical noise) is a function of coverage c. To
estimate o, a ‘binning’” approach can be used,
as in the CONTRA algorithm [9]. Briefly, tar-
gets are binned by their log-coverage, and the
standard deviation is calculated for each bin.
A curve is fitted, which is used to produce a
value for the expected variation, 6., given any
log-coverage value (more details are provided
in Section 3.5.) A p-value is then computed
for each target using o. for the target’s log-
coverage. CNVs are identified as the targets
whose p-values indicate that they are statistical
outliers compared to the rest of the dataset.

The above procedure works well if many re-
gions are targeted, and only few of them are
expected to be affected by CNVs (as in the case
of many inherited diseases, for example). But if
many targets are affected by CNVs (such as in
Figure 1(a) and (b)), then true copy number vari-
ations will be incorrectly attributed to statistical
noise. This leads to a decreased sensitivity to
large CNVs, as has also been noted by Tan et
al. for the CONTRA algorithm [7]. It is there-
fore necessary to extend the model to account
for potential large-scale changes in log-ratios
caused by changes in copy number. In the
CNV detection tool, we do this by allowing for a
non-zero mean in constant copy-number regions
during the estimation of the statistical noise.
Combining Equation 1 with the sparse normal
mean model described in [10], we model the
log-ratios X; with a normal distribution, where

the mean pgr only depends on the copy number
of the region, and the variance o2 is a function
of target coverage c:

X; ~ N(ug,02) (2)

Here, R is a constant copy-number region with
i € R. The main goal of the algorithm in the
CNV detection tool is to estimate ur and o,
accurately, and thus separate the large-scale
copy-number changes from the smaller-scale
statistical noise in each copy-number-constant
region.

The estimation of these parameters and the
statistical testing using the combined model is
carried out in a stepwise fashion.

1. We segment each chromosome into con-
stant copy-number regions, using the
Screening and Ranking Algorithm (SaRA)
described in [10]. Here, we use a con-
stant estimator ¢ for the intra-region vari-
ability, as we assume that the intra-region
variability is much smaller than the inter-
region variability. Thus, the coverage-
dependence of the intra-region variance
is ignored for the purposes of this seg-
mentation step only (Section 3.4).

2. For each region, we compute a median-
based robust estimate gir for ur. Sub-
tracting this estimate from each X;, we
expect X; — jig ~ N(0,02), where i € R.
This is identical in form to the simple
model described in Equation 1, and the
binning approach of CONTRA can there-
fore be used to compute a copy number-
adjusted coverage-dependent model for
o. (Section 3.5).

3. For each target, we obtain (one-sided)
p-values for amplification and deletion
against a null hypothesis of no change,
using the copy-number adjusted estima-
tor .. Finally, we use Fisher’'s method
for combining the target-level p-values to
obtain p-values for each region, against a
hypothesis of no change (Section 3.6).
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Figure 1: The adjusted log2-ratios in two different types of samples. The black dots represent the ad-
justed log-ratios calculated at each targeted region. The blue and red plateaus are the regions produced
by the CNV detection tool after segmentation. The red regions mark the targets that were predicted to
be part of a CNV at a significance level of 0.05 and fold-change cutoff of 1.4. The blue regions were not
called by the CNV detection tool. The datasets are described in more detail in Section 4.1. (a) Sam-
ple M62-4 from Benchmark 1, inherited large-scale genomic alterations. A large part of chromosome
8 (chr8:107120037-119294603) is affected by a heterozygous deletion. The sample (NA09888, Corriel
Institute) was probed with QIAGEN amplicon-based CNV panel CNA902Y. (b) Sample from Benchmark
3, metastatic cancer. The top and bottom plots are identical, except the scaling on the y-axis. The sample
is affected by a large number of CNVs. The sequencing data are accessible under accession number
SRR948983, originally published in [13]. The target coordinates were obtained from the authors of [13]
(personal communication).

3 Detailed Methods

In this section, we describe the steps of the al-
gorithm implemented in the CNV detection tool
in more details.

3.1 Computing base-level coverages and
generation of a robust baseline

For each case and control sample, base-level
coverages are computed by counting the num-
ber of reads aligned to every targeted base.
Then, a robust baseline for base-level cover-
ages is generated from all control samples by

computing the trimmed mean of the coverages
at each base in the control samples, as de-
scribed in [9]. In this baseline, each targeted
nucleotide is associated with a coverage value,
which quantifies the overall depth-of-coverage
of the nucleotide in the control samples.

3.2 Normalization of coverages and
chromosome-level analysis

Both the library size of the case sample, L¢ase,
and library size of the baseline, Lpaseline, are
defined as the sum of the coverages at all po-
sitions. Clearly, the library sizes depend on
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the sequencing depths of the different sam-
ples, and normalization must be done before
computing the target-level log-ratios. A simple
approach is to scale both the case and the
baseline library sizes to their geometric mean,
as is done in [9]. Thus, a single scaling value,
s, can be used to normalize every raw coverage
in the case-baseline pair:

5 — vLcaseLbaseline (3)

Lcase

The nucleotide-level normalized coverage d at
each targeted position in the case and baseline
is computed from the un-normalized coverage
c:

dcase = Ccase " 5+ 0 (4)
+0 (5)

Chaseli
dbaseline =
6 is a small offset (equal to 0.5 in the CNV
detection tool) used to prevent zero coverages
in either the case or the baseline.

However, when large parts of the genome are
affected by CNVs, as is the case in Figure 1(a)
and (b), then the library size of the case sam-
ple will be significantly affected by these CNVs,
and the above approach will incorrectly attribute
this effect to a difference in sequencing depth.
Therefore, in the CNV detection tool, we first
detect chromosomal coverage outliers (chromo-
somes possibly containing large-scale CNVs),
and compute Lcase and Lpaseline Only using the
chromosomes that are found to have "typical"
coverages.

We detect chromosomal coverage outliers us-
ing linear regression analysis, in the following
steps.

1. Alinear model is used to model the chro-
mosomal coverages:

Cease = MChaseline + € (6)

where:

o Ce.ase IS @ random variable represent-
ing the total coverage at targeted po-
sitions on a chromosome in the case
sample

o Chaseline IS @ random variable rep-
resenting the total coverage at tar-
geted positions on the same chro-
mosome in the baseline

e m is a constant multiplier, related
to the different sequencing depth in
the case sample compared to the
baseline

e ¢ is the error, assumed to be Gaus-
sian

2. The parameter m is estimated from the
data by linear regression analysis.

3. For each chromosome k, the studentized
residual s; is computed using the ob-
served chromosomal coverages cpaseline, k
and cease k-

€k
T MSE - (1= ) )
where ej, = Mmcpaseline k — Ccase,k 1S the ob-
served residual, h; is the leverage (equal
to the kth diagonal entry in the hat ma-
trix), and the MSE is the mean squared
error.

4. The studentized residuals s; are T-
distributed with 1 degree of freedom. We
use this distribution to identify outliers at
5% significance. "Normal" chromosomes
are defined as the non-significant chro-
mosomes under this test. The remaining
chromosomes are outliers.

In the following sections, we use ‘‘coverage’ to
refer to normalized coverages computed using
Equations 4 and 5, but only using the chromo-
somes that are not detected to be outliers.

3.3 Log-ratios and their adjustment

In the CNV detection tool, we define the base-
line log-coverage of a target ¢ with length NV
as:

1
@i = logy N Z dbaseline,p (8)
p

and the non-adjusted log-ratio for the same tar-
get i as:

1
N Zp dcase,p

1
N zp dbaseline,p

r; = logy (9)
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where the sums are over all positions p in the
target.

Li et al. [9] observed a linear variation of log-
ratios with log-coverage, depending on the dif-
ferences in library sizes between case and con-
trols. They also proposed a linear correction
model, which has been implemented in a si-
milar way in the CNV detection tool. In the
CNV detection tool, a straight line is fitted be-
tween the non-adjusted log-ratios and baseline
log-coverages, and this fitted line is subtracted
from each non-adjusted log-ratio to produce the
adjusted log-ratio x;.

(10)

Ti="Ti—a-¢;—b

where a and b are the parameters of the fitted
line. In the following sections, by "log-ratios"
we refer to the adjusted log-ratios.

3.4 Chromosome segmentation

The chromosomes are segmented using the
multi-bandwidth SaRA algorithm [10]. A band-
width is an integer value that corresponds to
a window in which the algorithm searches for
breakpoints. In the CNV detection tool, the
bandwidths are determined by the "graining
level" parameter, and do not depend on the
chromosome lengths. Here we give a brief
description of the SaRA approach.

1. Taking one bandwidth value h, the diag-
nostic function is computed for every tar-
geti € [1,n] on a chromosome with length
n. The diagnostic function is the differ-
ence of the averages of the adjusted log-
ratios near the target ¢, within a window
of size h:

D(i,h) = % > W ()am (11)
m=1

where wy, (i) = sgn(m + 1 — i) fori —h <

m < i+ h and w,,(i) = 0 otherwise.

2. The set of local maximizers corresponding
to bandwidth h is identified. The target ¢
is an h-local maximizer if

Vi' €)i—h,i+h]: D(i,h) > D(i’,h) (12)

3. Steps 1 and 2 are repeated with the other
bandwidth values. A common set of local
maximizers is computed as the union of
the sets obtained for the different band-
widths. This set contains the potential
breakpoints to define the segments.

4. Local maximizers are removed from this
set one-by-one, until the Bayesian Infor-
mation Criterion (BIC) for the remaining
local maximizers is minimized. The BIC
for a set J of breakpoints is:

BIC(.J) = g log(0?) + Jlog(n) (13)

where n is the total number of targets on
the chromosome, and o is the weighted
average of the variance within all regions
produced by the breakpoints. The value
of the BIC will, in general, decrease if
a breakpoint is removed. In each round
of the optimization, we remove the local
maximiser whose removal leads to the
least decrease in variance. We continue
removing local maximizers until the BIC
no longer decreases.

5. Once the final set of local maximizers is
obtained, the targets in between the local
maximizers are joined into regions.

3.5 Estimation of o

Once the constant copy-number regions are
identified, we compute the median log-ratio in
each region R and use it as an estimate fip for
ur- The median is used instead of the average,
because it is a more robust estimator of the
mean in the cases where some observations
are incorrect. This can for example happen in
amplicon-based data, where a single SNP in a
primer region can reduce the coverage of the
entire amplicon to zero, despite no true differ-
ences in copy number.

Subtracting this estimate from each log-ratio
X, inside the region, we define Y; = X; — jig,
which we expect is normally distributed: Y; ~
N(0,02), where i € R.

The remaining task is to estimate 0. as a
function of coverage. Similarly to CONTRA [9],
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we classify the observations into approximately
equal-sized bins on the basis of their log-
coverage in the baseline. In the CNV detec-
tion tool, the number of bins is approximately
10, but the precise number of bins is deter-
mined dynamically on the basis of the number
of targets in the data. For each bin, we com-
pute the median log-coverage, as well as the
standard deviation of the adjusted log-ratios
of the targets in the bin. We estimate the
standard deviation robustly, based on the inter-
quartile range. The result of the binning step
is that we have a set of log-coverage-log-ratio
value pairs. An exponentially decreasing func-
tion f(dpaseline) = o - exp(—/ - dpaseline), 5 > 0,
is fitted to these points, to produce a conti-
nuous model for the expected variation in the
log-ratios for any given log-coverage value (see
illustration in Figure 2).

3.6 Statistical testing

The null hypothesis under the combined model
for each target is

Hy: X; ~ N(u,0?)

where: 1= 0,0 = f(dpaseline.i)

(14)

Thus, we compute one-sided p-values to test
the alternative hypotheses H; : p > 0 (amplifi-
cation case) and H; : u < 0 (deletion case).

Finally, to test the statistical significance of
each region, we combine these target-level p-
values using Fisher’s method:

k
X3~ =2 In(p;) (15)
=1

(16)

where p; is the p-value for the i™ hypothesis
test. If k£ tests are combined, the test statis-
tic xor has a chi-squared distribution with 2k
degrees of freedom.

4 Accuracy benchmarks

4.1 Data and parameters used in bench-
marking

To assess the accuracy of the CNV detection
tool, we used three markedly different datasets,
as detailed below. The datasets were chosen to
cover both inherited diseases and cancer, one-
copy as well as multiple-copy humber variations,
a broad size range for genomic alterations, vary-
ing sample purities (from 20% to 100%), differ-
ent target enrichment technologies (PCR-based
as well as whole exome sequencing), and a
wide range of sequencing depths (from 30x up
to 1500x). All three benchmark datasets have
also been published previously, enabling the di-
rect comparison of our method with alternative
methods for CNV predictions.

1. Benchmark 1: Multiplex-PCR enrichment
and deep sequencing of inherited chro-
mosomal disease. This PCR-enriched
custom QIAGEN GeneRead gene panel
dataset was originally described in [11],
where it was used to benchmark the
quandico tool for copy number analysis.
The sequencing reads were mapped to
the hgl9 assembly and used directly in
the CNV detection tool, without any addi-
tional steps. As in [11], the samples were
grouped into three sets: (a) M62 "high
coverage dataset", with a read depth of
approximately 1500x, (b) M63 "medium-
coverage" dataset, with a read depth of
approximately 650x, and (c) M117 "val-
idation" dataset, with a read depth of
approximately 1000x. In our case, the
algorithm did not require a training step,
so all three datasets were used for vali-
dation. The M62 and M63 datasets were
generated using the same custom-made
gene panel (CNA902Y), and M117 was
generated using a second custom panel
(NGHS-991Y). The following samples were
used as controls for the M62 and M63
datasets: NA12878 and NA19219. The
following samples were used as controls
for the M117 dataset: NA12878 and
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Figure 2: lllustration of the binning procedure to model variation as a function of coverage. The figures
were produced in the Biomedical Genomics Workbench using the CNV detection tool. In the top figure,
the adjusted log-ratio of each target is plotted against its log-coverage in the baseline. The log-coverages
are centered around O for all coverages, with the greatest variation at the lowest coverages. In the bottom
figure, each blue dot is derived from a "bin" containing a set of targets. For each bin, the mean of the
log-ratios is plotted against the mean of the log-coverages in the baseline. A curve is then fitted (red
crosses), to give a continuous model for the expected variation in log-ratios for any given log-coverage.

NA19240. As only female controls were
available, targets on chromosomes X and
Y were ignored in both the prediction and
in the benchmarking counts. The CNV
detection tool was run with default param-
eters, except the "Low coverage cutoff"
parameter, which was set to 150 for the
M62 dataset, 65 for the M63 dataset,
and 100 for the M117 dataset, corre-
sponding to approximately a tenth of the
average read depth in each case.

2. Benchmark 2: Whole-exome sequencing

of melanoma. This exome-sequencing
dataset was originally described in [12],
where it was used to benchmark the
Excavator tool for copy number analy-
sis. In that study, the samples were
also independently profiled for CNVs on
the Affymetrix 250K SNP Array platform.
The sequencing reads were downloaded
from the Sequence Read Archive under
accession ERP001844, mapped to the
hgl19 assembly, and used directly in the
CNV detection tool, without any additional

P. 10
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steps. The following samples were used
as the set of controls for all predictions on
this dataset: ERR174237, ERR174238,
ERR174239, ERR174240, ERR174241,
and ERR174242. As the target file, we
used the Agilent SureSelect S0274956
definitions. The CNV detection tool was
run with default parameters, except the
"Low coverage cutoff" parameter, which
was set to 10 due to the low coverage
(approximately 30x) of the samples, and
the "Minimum fold-change cutoff" param-
eter, where runs were made both with a
value of 1.4 and 1.2.

3. Benchmark 3: Clinical cancer genomic
profiling. This dataset was originally
described in [13], where it was used
to benchmark a proprietary pipeline for
copy number detection. The sequen-
cing reads were downloaded from the
Sequence Read Archive under accession
SRP028580. The target file was ob-
tained from the authors of [13] (personal
communication). The sequencing reads
were mapped to the hgl9 assembly and
used directly in the CNV detection tool,
without any additional steps. The fol-
lowing samples were used as the set
of controls for all predictions on this
dataset: SRR948995, SRR948996 and
SRR948997. As only female controls
were available, targets on chromosomes
X and Y were ignored in both the predic-
tion and in the benchmarking counts. The
CNV detection toolwas run with default pa-
rameters, except the "Low coverage cut-
off" parameter, which was set to 150 for
all the samples, and the "Graining level"
parameter, which was set to "Fine" (as
CNVs spanning only a few targets were
expected).

4.2 Benchmarking approach

We used the CNV detection tool to produce a
"region-level" CNV track for each sample. This
track contains the CNV regions that passed the
p-value and fold-change cutoff filtering criteria.

To evaluate the accuracy of each "region-level"
CNV prediction result on the targetlevel, we
used the original target track that was used
to produce the prediction, and classified each
target into one of the following categories: true
positive (TP), true negative (TN), false positive
(FP) and false negative (FN). A TP target was
defined as one that fulfilled all of the following
criteria:

e The target overlaps with an expected CNV
region.

e The target overlaps with a CNV region pro-
duced by the CNV detection tool.

e The direction of change (gain or loss) pre-
dicted by the CNV detection tool is the
same as the expected direction of change.
The magnitude of the predicted change
was not considered in these benchmarks.

A FP target overlaps with a predicted CNV re-
gion, but not with an expected CNV region. A FN
target overlaps with an expected CNV region,
but not with a predicted CNV region. Lastly, a
TN target is not included either in the expected
or in the predicted CNV regions.

We used the following measures to evaluate
the accuracy of our predictions:

e Sensitivity: Sensitivity is defined as the
TPR (true positive rate), i.e. the frac-
tion of CNVs that were correctly called:
TPR = TP/(TP + FN)

e Specificity: Specificity is defined as the
TNR (true negative rate), i.e. the fraction
of non-CNVs that were correctly not called:
TNR = TN/(TN + FP)

e NPV: The NPV (negative predictive value)
is the fraction of the predicted negative
(non-CNV) calls that were correct, and
is thus another measure of sensitivity:
NPV = TN/(TN + FN)

e PPV: The PPV (positive predictive value)
is the fraction of the predicted posi-
tive (CNV) calls that were correct, and
is thus another measure of specificity:
PPV = TP/(TP + FP)
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To evaluate the gene-level accuracy, similar
classifications were used, but the counting was
done on the basis of a gene track, where the
target regions aimed at the same gene were
joined. This reflects the currently most com-
mon use case, where the gene-level predictions
are more relevant, and the exact breakpoints
are of secondary importance. Furthermore, it
also eliminates possible artifacts in the results
resulting from "edge effects" due to uncertain
CNV breakpoints. To date, no absolute gold-
standard dataset exists for benchmarking CNV
tools, and there is usually some uncertainty
associated with the precise CNV breakpoint lo-
cations even in the reference datasets. We
note also that the CNV detection tool was not
designed to pinpoint breakpoints inside target
regions.

All benchmarks were automated. Target-level
comparisons were done in Benchmarks 1 and
2, and gene-level comparisons were done in
Benchmarks 1 and 3. The detailed sample-level
results are provided in Appendix A.

4.3 Results and Discussion
4.3.1 Benchmark 1

The samples in Benchmark 1 were enriched
using a multiplex PCR strategy, where se-
quence variations can lead to different PCR
enrichment efficiencies, and variants (particu-
larly short insertions or deletions) may lead to a
reduced sequencing depth without the presence
of CNVs [11]. Our results can be found in Sec-
tion A.1. On the gene-level, again we observed
a sensitivity of 100% (all affected genes were
detected), and a specificity of 99%, when mea-
sured using the true negative rate. The target-
level sensitivity was also high at 95%, with a
specificity of 100% (rounded to the nearest per-
cent). We conclude, therefore, that accuracy
of the CNV detection tool was very high on this
dataset, with both sensitivities and specificities
close to 100%.

Both the gene-level and the target-level PPVs
were high in this benchmark (86% and 96%,
respectively), as the segmentation was carried

out on a large scale, due to the "Graining level"
parameter being set to "Coarse". The PPV can
be increased significantly by filtering the result-
ing CNV calls by the number of targets included
in the CNV region.

Interestingly, the FN and FP calls clustered in a
few samples. On closer inspection (data avail-
able on request), we found that several of the
same samples were also affected by FN and FP
calls in the independent method, quandico [11],
which was benchmarked using the same data.
This indicates the presence of experimental er-
rors, or that the reference annotations may have
been slightly inaccurate for these regions.

Neither the sensitivity of the predictions nor
the specificity was correlated with sequencing
depth in these benchmarks. This is expected,
because all samples were deeply sequenced,
and the most important errors affecting accu-
racy were most likely to be systematic (rather
than random) errors, which cannot be reduced
by increasing sequencing depth.

4.3.2 Benchmark 2

Benchmark 2 was a whole-exome sequencing
dataset, targeting a very large number of re-
gions (over 170,000 targets) at a low depth of
coverage (approximately 30x). Furthermore, the
samples were derived from melanoma cell lines
affected by large-scale genomic alterations.
Due to the whole-exome nature of this dataset,
we did not carry out gene-level benchmarks on
this data. Our results can be found in Section
A.2.

Even though this dataset has been previously
used in benchmarking the Excavator tool [12],
no known "true positive" list of CNVs exists for
it. In [12], genomic SNP array profiling was
performed on the same samples, producing an
independent list of CNVs based on non-NGS
technology. In the same work, it was found
that the NGS-based analysis was significantly
more sensitive than the SNP-array technology,
particularly for the detection of small CNVs. Our
results for this dataset generally support the
same conclusion.

P.12



00000
QIAGEN

White Paper

White paper: Copy number variant detection

We compared our prediction results both with
the predictions of Excavator, and the SNP array
profiling results reported in [12]. As Excavator
reports only 5 copy number states, whereas
our tool reports a continuum of fold-changes
compared to the normal, we ran the CNV de-
tection tool both with two fold-change cutoff
values: 1.4, to increase specificity, and 1.2,
to increase sensitivity. As expected, we found
that there was a very good correlation between
the predictions of our tool and Excavator. Our
tool called 95% of the targets that were called
by Excavator at a fold-change cutoff of 1.4, and
this increased to 99% when the fold-change
cutoff was reduced to 1.2. Furthermore, 98%
of the targets that were called using the SNP
array technology were also called by the CNV
detection tool, confirming the high sensitivities
we have observed with the other benchmarking
datasets.

The specificity of the calls is more difficult to
evaluate, particularly because it is not prac-
tically feasible to verify the many calls made
by either Excavator or the CNV detection tool.
However, we found a great degree of overlap
between the predictions of the two tools: with
the fold-change cutoff set to 1.4, 92% of the
targets called by our tool were also called by
Excavator, and 98% of the targets not called
by our tool were not called by Excavator, ei-
ther. When the fold-change cutoff was reduced
to 1.2, the specificities compared to the Ex-
cavator calls reduced (PPV of 47%). This was
expected, because Excavator only reports het-
erozygous (one-copy) or homozygous (multiple-
copy) changes, corresponding to a minimum
fold-change of 1.5 in the case of amplifications,
and it is thus not sensitive to fold-changes of
smaller magnitudes. The CNV detection tool,
in principle, is capable of predicting significant
fold-changes of any magnitude, which may oc-
cur in large numbers in cancer-affected samples
due to tumor heterogeneity.

As was also observed for Excavator [12], the
specificity of the CNV detection tool was not
high when evaluated against the SNP array re-
sults. With the fold-change cutoff set to 1.4,

only 34% of the targets predicted to be affected
by the CNV detection tool were also called in the
SNP array approach. In comparison, 35% of the
targets predicted by Excavator were also called
in the SNP array approach (data not shown).
With the fold-change cutoff reduced to 1.2, the
agreement reduced even further to 17%, indicat-
ing that fewer than 1 in 5 targets called by the
CNV detection tool were also among the SNP
array calls. However, as discussed in [12], the
low degree of specificity of the NGS-based meth-
ods compared to the SNP array-based method
is more likely to be a result of higher sensitivity
rather than a sign of lower specificity in the
NGS-based methods.

Overall, as Excavator and the CNV detection tool
are based on very different algorithms, such a
degree of agreement between these two tools
greatly increases our confidence that the sensi-
tivity and the specificity of both tools are indeed
very high for whole-exome sequencing data.

4.3.3 Benchmark 3

This clinical sequencing dataset was generated
by Foundation Medicine, Inc., and recently pub-
lished as part of a larger study describing a clin-
ical pipeline based on NGS [13]. This titration
dataset enables the evaluation of the sensitivity
of CNV prediction in cancer samples at tumor
purities of less than 100%. As only gene-level
results were provided in that study, and target-
level resolution were not available, we also only
carried out gene-level analysis in this case. Our
results can be found in Section A.3.

The evaluation of the sensitivity and specificity
of predictions on this dataset was challenging
due to several factors. Firstly, the CNVs were
not verified using a non-NGS technology, and
the published study [13] only reported homozy-
gous deletions or amplifications of > 6 copies.
(This corresponds to an observed fold-change of
3 for a case sample with 100% sample purity,
or a fold-change of just 1.4 in a sample with
20% sample purity). Furthermore, the specificity
of the predictions was not evaluated at all.

Nevertheless, the CNV detection tool was capa-
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ble of identifying every affected gene reported
by [13] when the sample purity was 50% or
greater, and the sensitivity of detection was
only reduced below 96% when the sample pu-
rity was lower than 30%. This suggests that
the CNV detection tool is highly sensitive in
the gene-level detection of CNVs in this clin-
ical sequencing dataset, even in the case of
low-purity samples. (In a separate experiment,
when the fold-change cutoff was reduced to 1.2,
a sensitivity of 100% was obtained by the CNV
detection tool even in the lowest-purity sample
- data not shown.)

The fraction of called targets also called by the
cited study is generally rather low, particularly
when evaluated using the PPV metric. However,
as in the case of Benchmark 2, we believe
this is due to an increased sensitivity in our
method, especially at higher sample purities:
indeed, at a sample purity of 100%, the CNV
detection tool with a fold-change cutoff of 1.4 is
sensitive enough to call a heterozygous amplifi-
cation (three copies), in comparison to the six or
more copies that are required in the published
study [13].

5 Conclusions

The CNV detection tool in the Biomedical Ge-
nomics Workbench is capable of accurate iden-
tification of copy number variations in a broad
range of next-generation sequencing data. In
nearly all of our benchmarks, genes which were
affected by copy number variations were de-
tected with a 100% sensitivity, even at reduced
sample purities. The target-level sensitivities
were similarly over 95% under most conditions.
Our benchmarks using samples affected by in-
herited diseases indicate that the specificity of
the CNV detection tool also approaches 100%.
The specificity of the tool is more challenging
to evaluate on cancer datasets, particularly due
to the lack of gold standard datasets. However,
an analysis of the agreement between our tool
and other methods shows that the specificity of
the CNV detection tool is comparable to other
state-of-the-art tools, such as Excavator [12].

The CNV detection tool has several advantages
over other tools currently available for the pre-
diction of CNVs. Firstly, it reports fold-changes
on a continuum, enabling the prediction of CNVs
at less than 100% sample purity, and places
no fundamental restriction on the predictable
effect size. Secondly, it includes an in-built seg-
mentation step, enabling the determination of
a minimum size for the detected CNVs. Impor-
tantly, as the CNV detection tool is an in-built
functionality of the Biomedical Genomics Work-
bench, the results of the predictions can be
easily visualized alongside the read mappings
and the results of other tools in the Genome
Browser View.

The main limitation of the CNV detection tool is
that it requires the presence of unaffected tar-
gets for optimal performance, as it’s based on
a statistical method where an equal sequencing
depth is not required in the case and control
samples. The normalization procedure models
the differences in sequencing depth between
the case and control samples, and the CNV
detection tool depends on this model to recog-
nize biological CNVs as coverage outliers. This
method works most effectively when a large
number of unaffected targets is available, so
an accurate model can be computed for the
sequencing depth. For the same reason, panel
design is of high importance, and the tool is not
suitable for the analysis of datasets where only
a single gene was sequenced.

In conclusion, the CNV detection tool is a versa-
tile and accurate method for the identification
of copy number variants in NGS data, and it
has the potential to provide valuable insights in
basic medical research, as well as translational
clinical settings.
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A Detailed sample-level results

Benchmark 1: gene-level results

Sample TP TN FP FN Sensitivity Specificity NPV PPV
M62-1 (NA01201) 4 36 0 0 1.00 1.00 1.00 1.00
M62-3 (NAO5067) 2 38 0 0 1.00 1.00 1.00 1.00
M62-4 (NAO988S8) 5 33 2 0 1.00 0.94 1.00 0.71
M62-5 (NA11672) 3 37 0 0 1.00 1.00 1.00 1.00
M62-6 (NA12606) 3 36 1 0 1.00 0.97 1.00 0.75
M62-8 (NA13783) 4 36 0 0 1.00 1.00 1.00 1.00
M62-9 (NA14164) 2 37 1 0 1.00 0.97 1.00 0.67
M62-10 (NA20022) 2 38 0 0 1.00 1.00 1.00 1.00
Total, M62 25 291 4 0 1.00 0.99 1.00 0.86
M63-1 (NA01201) 4 36 0 0 1.00 1.00 1.00 1.00
M63-3 (NA05067) 2 36 2 0 1.00 0.95 1.00 0.50
M63-4 (NAO988S8) 5 35 0 0 1.00 1.00 1.00 1.00
M63-5 (NA11672) 3 36 1 0 1.00 0.97 1.00 0.75
M63-6 (NA12606) 3 36 1 0 1.00 0.97 1.00 0.75
M63-8 (NA13783) 4 35 1 0 1.00 0.97 1.00 0.80
M63-9 (NA14164) 2 37 1 0 1.00 0.97 1.00 0.67
M63-10 (NA20022) 2 37 1 0 1.00 0.97 1.00 0.67
Total, M63 25 288 7 0 1.00 0.98 1.00 0.78
M117-3 (NA11213) 4 54 2 0 1.00 0.96 1.00 0.67
M117-4 (NAO9367) 9 51 0 0 1.00 1.00 1.00 1.00
M117-5 (NA14485) 7 53 0 0 1.00 1.00 1.00 1.00
M117-6 (NAO6226) 7 53 0 0 1.00 1.00 1.00 1.00
M117-7 (NA16595) 2 57 1 0 1.00 0.98 1.00 0.67
M117-8 (NA09216) 2 58 0 0 1.00 1.00 1.00 1.00
M117-9 (NA10925) 4 56 0 0 1.00 1.00 1.00 1.00
M117-10 (NA10985) 1 59 0 0 1.00 1.00 1.00 1.00
Total, M117 36 441 3 0 1.00 0.99 1.00 0.92
All samples 85 961 14 0 1.00 0.99 1.00 0.86

A.1 Benchmark 1: Deep sequencing of inherited disease samples after PCR-based
target-enrichment
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Benchmark 1: target-level results

Sample TP TN FP FN Sensitivity Specificity NPV PPV
M62-1 (NA01201) 71 567 0 0 1.00 1.00 1.00 1.00
M62-3 (NAO5067) 36 602 0 0 1.00 1.00 1.00 1.00
M62-4 (NAO98S8S8) 88 546 4 0 1.00 0.99 1.00 0.96
M62-5 (NA11672) 53 584 0 1 0.98 1.00 1.00 1.00
M62-6 (NA12606) 42 564 8 24 0.64 0.99 0.96 0.84
M62-8 (NA13783) 71 567 0 0 1.00 1.00 1.00 1.00
M62-9 (NA14164) 39 587 6 6 0.87 0.99 0.99 0.87
M62-10 (NA20022) 37 601 0 0 1.00 1.00 1.00 1.00
Total, M62 437 4618 18 31 0.93 1.00 0.99 0.96
M63-1 (NA01201) 71 567 0 0 1.00 1.00 1.00 1.00
M63-3 (NAO5067) 23 577 25 13 0.64 0.96 0.98 0.48
M63-4 (NAO98S8S8) 88 550 0 0 1.00 1.00 1.00 1.00
M63-5 (NA11672) 53 582 2 1 0.98 1.00 1.00 0.96
M63-6 (NA12606) 63 570 2 3 0.95 1.00 0.99 0.97
M63-8 (NA13783) 48 562 5 23 0.68 0.99 0.96 0.91
M63-9 (NA14164) 44 592 1 1 0.98 1.00 1.00 0.98
M63-10 (NA20022) 34 594 7 3 0.92 0.99 0.99 0.83
Total, M63 424 4594 42 44 0.91 0.99 0.99 0.91
M117-3 (NA11213) 96 824 18 0 1.00 0.98 1.00 0.84
M117-4 (NAO9367) 175 762 0 1 0.99 1.00 1.00 1.00
M117-5 (NA14485) 119 818 0 1 0.99 1.00 1.00 1.00
M117-6 (NAO6226) 101 837 0 0 1.00 1.00 1.00 1.00
M117-7 (NA16595) 59 877 2 0 1.00 1.00 1.00 0.97
M117-8 (NA09216) 57 881 0 0 1.00 1.00 1.00 1.00
M117-9 (NA10925) 35 902 0 1 0.97 1.00 1.00 1.00
M117-10 (NA10985) 46 890 0 2 0.96 1.00 1.00 1.00
Total, M117 688 6791 20 5 0.99 1.00 1.00 0.97
All samples 1549 16003 80 80 0.95 1.00 1.00 0.96

P.
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A.2 Benchmark 2: Whole-exome sequencing of melanoma.

Fold-change cutoff: 1.4, overlap with Excavator results

Benchmark 2: target-level results

Sample TP TN FP FN Sensitivity Specificity NPV PPV
MeOl1 (ERR174231) 9268 154120 7707 503 0.95 0.95 1.00 0.55
Me02 (ERR174232) 48275 119777 788 2758 0.95 0.99 0.98 0.98
MeO4 (ERR174233) 36752 130974 2484 1388 0.96 0.98 0.99 0.94
MeO5 (ERR174234) 56278 109576 1099 4645 0.92 0.99 0.96 0.98
MeO8 (ERR174235) 49382 118002 932 3282 0.94 0.99 0.97 0.98
Mel2 (ERR174236) 22901 141723 6606 368 0.98 0.96 1.00 0.78
Total 222856 774172 19616 12944 0.95 0.98 0.98 0.92
Fold-change cutoff: 1.4, overlap with SNP array results

Sample TP TN FP FN Sensitivity Specificity NPV PPV
MeOl1 (ERR174231) 8506 153868 8469 755 0.92 0.95 1.00 0.50
MeO2 (ERR174232) 181 122365 48882 170 0.52 0.714 1.00 0.00
MeO4 (ERR174233) 10729 132352 28507 10 1.00 0.82 1.00 0.27
MeO5 (ERR174234) 28122 113386 29255 835 0.97 0.79 0.99 0.49
MeO8 (ERR174235) 12884 121252 37430 32 1.00 0.76 1.00 0.26
Mel2 (ERR174236) 21190 141853 8317 238 0.99 0.94 1.00 0.72
Total 81612 785076 160860 2040 0.98 0.83 1.00 0.34
Fold-change cutoff: 1.2, overlap with Excavator results

Sample TP TN FP FN Sensitivity Specificity NPV PPV
MeOl1 (ERR174231) 9639 117028 44799 132 0.99 0.72 1.00 0.18
MeO2 (ERR174232) 50608 93873 26692 425 0.99 0.78 1.00 0.65
MeO4 (ERR174233) 38056 59300 74158 84 1.00 0.44 1.00 0.34
MeO5 (ERR174234) 59120 103837 6838 1803 0.97 0.94 0.98 0.90
MeO8 (ERR174235) 51856 110736 8198 808 0.98 0.93 0.99 0.86
Mel2 (ERR174236) 23256 45988 102341 13 1.00 0.31 1.00 0.19
Total 232535 530762 263026 3265 0.99 0.67 0.99 0.47
Fold-change cutoff: 1.2, overlap with SNP array results

Sample TP TN FP FN Sensitivity Specificity NPV PPV
MeO1 (ERR174231) 8878 116777 45560 383 0.96 0.72 1.00 0.16
Me02 (ERR174232) 319 94266 76981 32 0.91 0.55 1.00 0.00
MeO4 (ERR174233) 10734 59379 101480 5 1.00 0.37 1.00 0.10
MeO5 (ERR174234) 28138 104821 37820 819 0.97 0.73 0.99 0.43
MeO8 (ERR174235) 12896 111524 47158 20 1.00 0.70 1.00 0.21
Mel2 (ERR174236) 21418 45991 104179 10 1.00 0.31 1.00 0.17
Total 82383 532758 413178 1269 0.98 0.56 1.00 0.17
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100% tumor purity

A.3 Benchmark 3: Clinical cancer genomic profiling.

Benchmark 3: gene-level results, >30% tumor purity

Sample TP TN FP FN Sensitivity Specificity NPV PPV
SRR948953 9 189 74 0 1.00 0.72 1.00 0.11
SRR948959 2 187 83 0 1.00 0.69 1.00 0.02
SRR948965 2 209 61 0 1.00 0.77 1.00 0.03
SRR948971 1 215 56 0 1.00 0.79 1.00 0.02
SRR948977 5 225 42 0 1.00 0.84 1.00 0.11
SRR948983 4 237 31 0 1.00 0.88 1.00 0.11
SRR948989 5 187 80 0 1.00 0.70 1.00 0.06
Total, 100% tumor 28 1449 427 0 1.00 0.77 1.00 0.06
75% tumor purity

Sample TP TN FP FN Sensitivity Specificity NPV PPV
SRR948954 9 198 65 0 1.00 0.75 1.00 0.12
SRR948960 2 198 72 0 1.00 0.73 1.00 0.03
SRR948966 2 245 25 0 1.00 0.91 1.00 0.07
SRR948972 1 260 11 0 1.00 0.96 1.00 0.08
SRR948978 5 238 29 0 1.00 0.89 1.00 0.15
SRR948984 4 213 55 0 1.00 0.79 1.00 0.07
SRR948990 5 225 42 0 1.00 0.84 1.00 0.11
Total, 75% tumor 28 1577 299 0 1.00 0.84 1.00 0.09
50% tumor purity

Sample TP TN FP FN Sensitivity Specificity NPV PPV
SRR948955 9 209 54 0 1.00 0.79 1.00 0.14
SRR948961 2 247 23 0 1.00 0.91 1.00 0.08
SRR948967 2 255 15 0 1.00 0.94 1.00 0.12
SRR948973 1 270 1 0 1.00 1.00 1.00 0.50
SRR948979 5 250 17 0 1.00 0.94 1.00 0.23
SRR948985 4 247 21 0 1.00 0.92 1.00 0.16
SRR948991 5 254 13 0 1.00 0.95 1.00 0.28
Total, 50% tumor 28 1732 144 0 1.00 0.92 1.00 0.16
40% tumor purity

Sample TP TN FP FN Sensitivity Specificity NPV PPV
SRR948956 8 248 15 1 0.89 0.94 1.00 0.35
SRR948962 2 233 37 0 1.00 0.86 1.00 0.05
SRR948968 2 261 9 0 1.00 0.97 1.00 0.18
SRR948974 1 271 0 0 1.00 1.00 1.00 1.00
SRR948980 5 256 11 0 1.00 0.96 1.00 0.31
SRR948986 4 249 19 0 1.00 0.93 1.00 0.17
SRR948992 5 257 10 0 1.00 0.96 1.00 0.33
Total, 40% tumor 27 1775 101 1 0.96 0.95 1.00 0.21
30% tumor purity

Sample TP TN FP FN Sensitivity Specificity NPV PPV
SRR948957 8 256 7 1 0.89 0.97 1.00 0.53
SRR948963 2 257 13 0 1.00 0.95 1.00 0.13
SRR948969 2 262 8 0 1.00 0.97 1.00 0.20
SRR948975 1 271 0 0 1.00 1.00 1.00 1.00
SRR948981 5 264 3 0 1.00 0.99 1.00 0.62
SRR948987 4 227 41 0 1.00 0.85 1.00 0.09
SRR948993 5 264 3 0 1.00 0.99 1.00 0.62
Total, 30% tumor 27 1801 75 1 0.96 0.96 1.00 0.26
Total, >30% tumor 138 8334 1046 2 0.99 0.89 1.00 0.12

P. 19
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Benchmark 3: gene-level results, <30% tumor purity

20% tumor purity

Sample TP TN FP FN Sensitivity Specificity NPV PPV
SRR948958 8 256 7 1 0.89 0.97 1.00 0.53
SRR948964 1 263 7 1 0.50 0.97 1.00 0.12
SRR948970 2 269 1 0 1.00 1.00 1.00 0.67
SRR948976 1 270 1 0 1.00 1.00 1.00 0.50
SRR948982 2 266 1 3 0.40 1.00 0.99 0.67
SRR948988 4 254 14 0 1.00 095 1.00 0.22
SRR948994 0 267 0 5 0.00 1.00 0.98 NA
Total, 20% tumor 18 1845 31 10 0.64 0.98 0.99 0.37
Total, <30% tumor 18 1845 31 10 0.64 0.98 0.99 0.37

P. 20
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