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Chapter 1

Introduction

Contents
1.1 The concept of CLC Single Cell Analysis Module . . . . . . . . . . . . . . . . . 10

1.2 Contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Installing modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Licensing modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Uninstalling modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Installing server extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Licensing server extensions . . . . . . . . . . . . . . . . . . . . . . . . . 18

Welcome to CLC Single Cell Analysis Module 24.0 -- a software package supporting your daily
bioinformatics work.

1.1 The concept of CLC Single Cell Analysis Module
CLC Single Cell Analysis Module 24.0 enables the study of single cell RNA (scRNA-Seq) data,
including RNA velocity, spatial transcriptomics, Assay for Transposase-Accessible Chromatin
(scATAC-Seq) samples, and T and B cell receptors (scTCR-Seq and scBCR-Seq, collectively known
as scV(D)J-Seq). The comprehensive toolbox includes tools for analyzing the different types of
data both separately and jointly.

scRNA-Seq

Tools are available for quality control and normalization, noise reduction and feature selection,
clustering, cell type prediction, and differential expression. UMAP and tSNE plots can be overlaid
with clusters, predicted cell types, or the expression of individual genes. Marker genes can
be identified through analyses of differential gene expression and by gathering information from
expression plots. Alternatively, cell type classifiers can be trained from pre-labeled cells. Two
pre-trained classifiers are provided, and can be extended. Further, velocity analysis can be
performed for data including both spliced and un-spliced reads, and an interactive phase portrait
plot is produced. In addition, high-dimensional vector that predicts the future state of individual
cells are added to the dimensionality reduction plots. The provided workflows can be easily

10



CHAPTER 1. INTRODUCTION 11

adjusted to fit the chemistry and protocol of the data and are a good starting point from either
raw FASTQ or an imported Expression Matrix.

Spatial transcriptomics

A tool is available for importing spatial transcriptomics data from Space Ranger spatial outputs.
The resulting plot can be overlaid with clusters, predicted cell types, or the expression of
individual genes. Additionally, the plot can be linked to a UMAP or tSNE plot, such that the same
visualization can be applied simultaneously to both plots.

scATAC-Seq

A complete pipeline from peak calling and footprinting to analysis of differential accessibility is
provided. The peak read mappings can be slit into minor sub-populations and visualized in a
Tracklist. It is also possible to generate UMAP and tSNE plots from the peak matrix. Further,
three workflows are provided starting either from reads or imported matrices.

scV(D)J-Seq

After the initial identification of clonotypes in the sample, these can be further filtered, combined
across samples and the sample-level immune repertoires can be compared with regards to
diversity estimates, gene usage, etc. UMAP and tSNE plots from matched scRNA-Seq data
can be overlaid with clonotype information, once this is converted to Cell Annotations. The
provided workflows are a good starting point from either raw FASTQ or imported Cell Clonotypes.
Additionally, workflows are available for the joint analysis of both scRNA-Seq and scV(D)J-Seq
data.

Selection of algorithms

The algorithms implemented have been selected to be the best performing at the time of devel-
opment as assessed by independent paper reviews. All algorithms have been re-implemented in
Java with the aim of being able to scale to large data sets and run on a wide range of hardware.
Internal benchmarks have been conducted to select the best performing algorithm for predicting
cell types, which is one of the key features in this software package. The manual provides
detailed descriptions of the chosen algorithms, how to adjust parameters for better performance,
and how to interpret results.

1.2 Contact information
CLC Single Cell Analysis Module is developed by:

QIAGEN Aarhus
Silkeborgvej 2
Prismet
8000 Aarhus C
Denmark

https://digitalinsights.qiagen.com/

https://digitalinsights.qiagen.com/
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Email: ts-bioinformatics@qiagen.com

The QIAGEN Aarhus team continuously improves products with your interests in mind. We
welcome feedback and suggestions for new features or improvements. How to contact us
is described at: http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/

index.php?manual=Contact_information_citation.html.

You can also make use of our online documentation resources, including:

• Core product manuals https://digitalinsights.qiagen.com/technical-support/
manuals/

• Plugin manuals https://digitalinsights.qiagen.com/products-overview/plugins/

• Tutorials https://digitalinsights.qiagen.com/support/tutorials/

• Frequently Asked Questions https://qiagen.my.salesforce-sites.com/KnowledgeBase/
KnowledgeNavigatorPage

1.3 System requirements
To work with CLC Single Cell Analysis Module you will need to have CLC Genomics Workbench 24.0
installed on your computer. With the exception of the requirements below, the system require-
ments of CLC Single Cell Analysis Module are the same as those for CLC Genomics Workbench
(http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=
System_requirements.html).

• 16 GB RAM recommended

For mapping of reads, we recommend running on a server. Although a laptop with 16 GB of RAM
can be used, the large number of reads are likely to lead to long runtimes when there are more
than 1000 cells.

In principle, the remaining tools can be run on modest hardware such as a laptop, especially
when the number of cells is under 50000.

1.4 Installing modules
Note: In order to install plugins and modules, the CLC Workbench must be run in administrator
mode. On Windows, you can do this by right-clicking the program shortcut and choosing "Run as
Administrator". On Linux and Mac, it means you must launch the program such that it is run by
an administrative user.

Plugins and modules are installed and uninstalled using the Workbench Plugin Manager. To open
the Plugin Manager, click on the Plugins ( ) button in the top Toolbar, or go to the menu option:

Utilities | Manage Plugins... ( )

The Plugin Manager has two tabs at the top:

mailto:ts-bioinformatics@qiagen.com
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Contact_information_citation.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Contact_information_citation.html
https://digitalinsights.qiagen.com/technical-support/manuals/
https://digitalinsights.qiagen.com/technical-support/manuals/
https://digitalinsights.qiagen.com/products-overview/plugins/
https://digitalinsights.qiagen.com/support/tutorials/
https://qiagen.my.salesforce-sites.com/KnowledgeBase/KnowledgeNavigatorPage
https://qiagen.my.salesforce-sites.com/KnowledgeBase/KnowledgeNavigatorPage
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=System_requirements.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=System_requirements.html
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• Manage Plugins An overview of your installed plugins and modules is provided under this
tab.

• Download Plugins Plugins and modules available to download and install are listed in this
tab.

To install a plugin, click on the Download Plugins tab (figure 1.1). Select a plugin. Information
about it will be shown in the right hand panel. Click on the Download and Install button to install
the plugin.

Figure 1.1: Plugins and modules available for installation are listed in the Plugin Manager under
the Download Plugins tab.

Accepting the license agreement

The End User License Agreement (EULA) must be read and accepted as part of the installation
process. Please read the EULA text carefully, and if you agree to it, check the box next to the
text I accept these terms. If further information is requested from you, please fill this in before
clicking on the Finish button.

Installing a cpa file

If you have a .cpa installer file for CLC Single Cell Analysis Module, you can install it by clicking
on the Install from File button at the bottom of the Plugin Manager.

If you are working on a system not connected to the internet, plugin and module .cpa files can
be downloaded from https://digitalinsights.qiagen.com/products-overview/
plugins/using a networked machine, and then transferred to the non-networked machine
for installation.

Restart to complete the installation

Newly installed plugins and modules will be available for use after restarting the software. When
you close the Plugin Manager, a dialog appears offering the opportunity to restart the CLC
Workbench.

https://digitalinsights.qiagen.com/products-overview/plugins/
https://digitalinsights.qiagen.com/products-overview/plugins/
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1.4.1 Licensing modules

When you have installed the CLC Single Cell Analysis Module and start a tool from that module
for the first time, the License Assistant will open (figure 1.2).

The License Assistant can also be launched by opening the Workbench Plugin Manager, selecting
the installed module from under the Manage Plugins tab, and clicking on the button labeled
Import License.

To install a license, the CLC Workbench must be run in administrator mode. On Windows, you
can do this by right-clicking the program shortcut and choosing "Run as Administrator". On Linux
and Mac, it means you must launch the program such that it is run by an administrative user.

Figure 1.2: The License Assistant provides options for licensing modules installed on the Workbench.

The following options are available:

• Request an evaluation license. Request a fully functional, time-limited license.

• Download a license. Use the license order ID received when you purchased the software
to download and install a license file.

• Import a license from a file. Import an existing license file, for example a file downloaded
from the web-based licensing system.

• Configure License Server connection. If your organization has a CLC Network License
Manager (or CLC License Server), select this option to configure the connection to it.

These options are described in detail in sections under http://resources.qiagenbioinformatics.

com/manuals/clcgenomicsworkbench/current/index.php?manual=Workbench_Licenses.html.

To download licenses, including evaluation licenses, your machine must have access to the
external network. To install licenses on non-networked machines, please see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_static_license_

on_non_networked_machine.html.

1.4.2 Uninstalling modules

Plugins and modules are uninstalled using the Workbench Plugin Manager.To open the Plugin
Manager, click on the Plugins ( ) button in the top Toolbar, or go to the menu option:

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Workbench_Licenses.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Workbench_Licenses.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_static_license_on_non_networked_machine.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_static_license_on_non_networked_machine.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_static_license_on_non_networked_machine.html
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Utilities | Manage Plugins... ( )

This will open the Plugin Manager (figure 1.3). Installed plugins and modules are shown under
the Manage Plugins tab of the Plugins Manager.

Figure 1.3: Installed plugins and modules are listed in the Plugins Manager under the Manage
Plugins tab.

To uninstall a plugin or module, click on its entry in the list, and click on the Uninstall button.

Plugins and modules are not uninstalled until the Workbench is restarted. When you close the
Plugin Manager, a dialog appears offering the opportunity to restart the CLC Workbench.

Disabling a plugin without uninstalling it

If you do not want a plugin to be loaded the next time you start the Workbench, select it in the
list under the Manage Plugins tab and click on the Disable button.

1.5 Installing server extensions
To use the tools and functionalities of CLC Single Cell Analysis Module on a CLC Server:

1. You need to purchase a license to run tools delivered by the CLC Single Cell Analysis Server
Extension.

2. A CLC Server administrator must install the license on the single server, or on the master
node in a job node or grid node setup, as described in section 1.5.1.

3. A CLC Server administrator must install the CLC Single Cell Analysis Server Extension on
the CLC Server, as described below.

Download and install server plugins and server extensions

Plugins, including server extensions (commercial plugins), are installed by going to the Extensions
( ) tab in the web administrative interface of the single server, or the master node of a job
node or grid nod setup, and opening the Download Plugins ( ) area (figure 1.4).
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Figure 1.4: Installing plugins and server extensions is done in the Download Plugins area under the
Extensions tab.

If the machine has access to the external network, plugins can be both downloaded and installed
via the CLC Server administrative interface. To do this, locate the plugin in the list under the
Download Plugins ( ) area and click on the Download and Install... button.

To download and install multiple plugins at once on a networked machine, check the "Select
for download and install" box beside each relevant plugin, and then click on the Download and
Install All... button.

If you are working on a machine without access to the external network, server plugin (.cpa)
files can be downloaded from: https://digitalinsights.qiagen.com/products-
overview/plugins/ and installed by browsing for the downloaded file and clicking on the
Install from File... button.

The CLC Server must be restarted to complete the installation or removal of plugins and server
extensions. All jobs still in the queue at the time the server is shut down will be dropped and
would need to be resubmitted. To minimize the impact on users, the server can be put into
Maintenance Mode. In brief: running in Maintenance Mode allows current jobs to run, but no
new jobs to be submitted, and users cannot log in. The CLC Server can then be restarted
when desired. Each time you install or remove a plugin, you will be offered the opportunity to
enter Maintenance Mode. You will also be offered the option to restart the CLC Server. If you
choose not to restart when prompted, you can restart later using the option under the Server
maintenance ( ) tab.

For job node setups only:

• Once the master CLC Server is up and running normally, then restart each job node CLC
Server so that the plugin is ready to run on each node. This is handled for you if you restart
the server using the functionality under

Management ( ) | Server maintenance ( )

• In the web administrative interface on the master CLC Server, check that the plugin is
enabled for each job node.

https://digitalinsights.qiagen.com/products-overview/plugins/
https://digitalinsights.qiagen.com/products-overview/plugins/
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Installation and updating of plugins on connected job nodes requires that direct data transfer
from client systems has been enabled, which is done by the CLC Server administrator, under the
"External data" tab.

Grid workers will be re-deployed when a plugin is installed on the master server. Thus, no further
action is needed to enable the newly installed plugin to be used on grid nodes.

Managing installed server plugins

Installed plugins can be updated or uninstalled, from under the Manage Plugins ( ) area
(figure 1.5), under the Extensions ( ) tab.

The list of tools delivered with a server plugin can be seen by clicking on the Plugin contents link
to expand that section. Workflows delivered with a server plugin are not shown in this listing.

Figure 1.5: Managing installed plugins and server extensions is done in the Manage Plugins area
under the Extensions tab. Clicking on Plugin contents opens a list of the tools delivered by the
plugin.

Links to related documentation

• Logging into the CLC Server web administrative interface: http://resources.qiagenbioinformatics.
com/manuals/clcgenomicsserver/current/admin/index.php?manual=Logging_into_administrative_interface

• Maintenance Mode: resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.
php?manual=Server_maintenance.html

• Restarting the server: resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/

index.php?manual=Starting_stopping_server.html

• Plugins on job node setups: resources.qiagenbioinformatics.com/manuals/clcserver/current/

admin/index.php?manual=Installing_Server_plugins_on_job_nodes.html

• Grid worker re-deployment: resources.qiagenbioinformatics.com/manuals/clcserver/current/

admin/index.php?manual=Overview_Model_II.html

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsserver/current/admin/index.php?manual=Logging_into_administrative_interface
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsserver/current/admin/index.php?manual=Logging_into_administrative_interface
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Server_maintenance.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Server_maintenance.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Starting_stopping_server.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Starting_stopping_server.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Installing_Server_plugins_on_job_nodes.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Installing_Server_plugins_on_job_nodes.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Overview_Model_II.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Overview_Model_II.html
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Plugin compatibility with the server software

The version of plugins and server extensions installed must be compatible with the version of
the CLC Server being run. A message is written under an installed plugin’s name if it is not
compatible with the version of the CLC Server software running.

When upgrading to a new major version of the CLC Server, all plugins will need to be updated.
This means removing the old version and installing a new version.

Incompatibilities can also arise when updating to a new bug fix or minor feature release of the
CLC Server. We recommend opening the Manage Plugins area after any server software upgrade
to check for messages about the installed plugins.

Licensing server extensions is described in section 1.5.1.

1.5.1 Licensing server extensions

Licenses are installed on a single server or on the master node of a job node or grid node setup.

To download and install a license:

• Log into the web administrative interface of the single server or master node as an
administrative user.

• Under the Management ( ) tab, open the Download License ( ) tab.

• Enter the Order ID supplied by QIAGEN into the Order ID field and click on the "Download
and Install License..." button (figure 1.6).

Please contact ts-bioinformatics@qiagen.com if you have not received an Order ID.

The CLC Server must be restarted for new license files to be loaded. Details about restarting can
be found at resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=
Starting_stopping_server.html.

Each time you download a license file, a new file is created in the licenses folder under the
CLC Server installation area. If you are upgrading an existing license file, delete the old file from
this area before restarting.

Figure 1.6: License management in done under the Management tab tab.

mailto:ts-bioinformatics@qiagen.com
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Starting_stopping_server.html
resources.qiagenbioinformatics.com/manuals/clcserver/current/admin/index.php?manual=Starting_stopping_server.html
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Reference data management

Template workflows delivered by the CLC Single Cell Analysis Module are configured to use
QIAGEN Reference Sets, making them simple to launch while helping ensure that the same
reference data is used consistently. This reference data can be easily obtained using the
Reference Data Manager in the CLC Genomics Workbench. Reference data for a specific workflow
can also be downloaded via workflow launch wizards. These features are described in detail in
section 2.1.

QIAGEN Sets for single cell analyses

Single cell data sets for Human and Mouse are called Single Cell hg38 (Ensembl) and Single Cell
Mouse (Ensembl), respectively, and are available under the QIAGEN Sets tab of the Reference
Data Manager (figure 2.1).

The reference data sets contain:

• The reference sequence, gene track, and mRNA track, used for mapping scRNA-Seq data.

• A pre-trained classifier with cell types from QIAGEN Cell Ontology (see section 8.1) to use
when predicting cell types or training with more cell types.

• A gene ontology that can be used together with differential expression data to analyze GO
terms.

• Reference V (variable), D (diversity), J (joining) and C (constant) gene segments, used for
mapping scTCR-Seq data.

• A peak shape filter used for calling scATAC-Seq peaks.

Further detail about working QIAGEN reference data is provided in section 2.1.
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Figure 2.1: A Single Cell reference data set viewed via the QIAGEN Sets tab of the Reference Data
Manager.

2.1 QIAGEN Sets
QIAGEN provides access to much common reference data using functionality under the QIAGEN
Sets tab of the Reference Data Manager. Data is distributed as Reference Data Elements, which
can be individually downloaded, or downloaded as part of a Reference Data Set. Many template
workflows are configured to make use of QIAGEN Reference Sets, making them simple to launch
while helping ensure that the same reference data is used consistently. Due to the way these
workflows are configured, the relevant reference data can also be downloaded via the workflow
launch wizard (figure 2.2).

Using the Reference Data Manager for QIAGEN reference data

To access QIAGEN Sets, open the Reference Data Manager by clicking on the References ( )
button in the top Toolbar or go to the Utilities menu and select Manage Reference Data ( ).
Then click on the QIAGEN Sets tab at the top left. Under this tab, there are subsections for
Reference Data Sets and Reference Data Elements (figure 2.3).

When a Reference Data Set is selected, information about it is displayed in the right hand pane.
This includes the size of the whole data set, and a table listing the workflow roles defined in the
set, with information about the data element specified for each role. Further details about the
element assigned to a role can be found by clicking on the link in the Version column. An icon to
the left of each set indicates whether data for this set has already been downloaded ( ) or not
( ). The same icons are used to indicate the status of each element in a Reference Data Set
(figure 2.4).

If you have permission to delete downloaded data, the Delete button will be enabled. When
reference data is stored on a CLC Server, you need be logged in from the Workbench as an
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Figure 2.2: When launching template workflows requiring reference data inputs, the relevant
reference data can be downloaded via the workflow launch wizard. If you are logged into a CLC
Server with a CLC_References location defined, you can choose whether to download the data to
the Workbench or Server.

Figure 2.3: Subheadings under the QIAGEN Sets tab provide access to Reference Data Sets and
Reference Data Elements

administrative user to delete reference data.

Searching for data available under the QIAGEN Sets tab

Use the search field under the top toolbar to search for terms in element and set names, workflow
role names, and versions. To search for just an exact term, put the term in quotes.

The results include the name of the element or set the term was found in, followed in brackets
by the tab it is listed under, e.g. (Reference Data Elements), (Tutorial Reference Data Sets), etc.
Hover the cursor over a hit to see what aspect of the result matched the search term (figure 2.5).
Double-click on a search result to open it.



CHAPTER 2. REFERENCE DATA MANAGEMENT 22

Figure 2.4: The elements in a Reference Data Set are being downloaded. The full size of the data
set is shown at the top, right hand side. The size of each element is reported in the "On Disk Size"
column. Below the row of tabs at the top is a search field that can be used to search for data sets
or elements.

Figure 2.5: Terms entered in the search field when the QIAGEN Sets tab is selected are searched
for in element and set names, workflow role names, and versions of the resources available under
that tab. Hovering the cursor over a hit reveals a tooltip with information about the match.

Downloading resources

To download a Reference Data Element or a Reference Data Set (i.e. all elements in that set),
select it and click on the Download button.

The progress of the download is indicated and you have the option to Cancel, Pause or Resume
the download (figure 2.4).

When the "Manage Reference Data" option at the top of the Reference Data Manager is set to
"Locally", data is downloaded to the CLC_References location in the CLC Workbench. When set
to "On Server", the data is downloaded to the CLC_References location in the CLC Server.
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Additional information

The HapMap (https://www.sanger.ac.uk/data/hapmap-3/) databases contain more
than one file. QIAGEN Reference Data Sets that include HapMap are initially configured with all
the populations available. You can specify specific populations to use when launching a workflow,
or you can create a custom reference set that contains only the populations of interest.

General information about Reference Data Sets, and creating Custom Sets, can be found at http:
//resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Reference_

Data_Sets_defining_Custom_Sets.html.

General information about the Reference Data Manager is at http://resources.qiagenbioinformatics.
com/manuals/clcgenomicsworkbench/current/index.php?manual=References_management.html.

https://www.sanger.ac.uk/data/hapmap-3/
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Reference_Data_Sets_defining_Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Reference_Data_Sets_defining_Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Reference_Data_Sets_defining_Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=References_management.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=References_management.html
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Running tools and workflows

When CLC Single Cell Analysis Module is installed, the toolbox is populated with Single Cell
Analysis specific tools and workflows. These include single cell related importers described
in chapter 4, and single cell related exporters described in chapter 5. In addition, the Single Cell
Analysis folder will appear in the Toolbox, and the Single Cell Workflows folder will appear in the
Template Workflows section. To launch a tool or workflow either double-click it in the toolbox
or use the quick launch button (figure 3.1). If you are connected to a CLC Server via the CLC
Workbench, you will be asked where you would like to run the analysis. We recommend that you
run the analysis on a CLC Server when possible.

Figure 3.1: The Launch button is situated in the top left corner of the workbench.

Running tools

All tools require an input. In many cases this will be an imported Expression Matrix ( ) / ( ),
Peak Count Matrix ( ), or Cell Clonotypes ( ) / ( ), or, when starting from FASTQ, imported
reads. See chapter 4 for how to import files in formats specific to single cell data.

Tools will only run correctly when meaningful input and parameters are provided. If a warning is
shown, read it carefully as it will in most cases guide you to the problem.

Select the input based on the description provided in the tool. Although most tools will only allow
selection of the correct data type as input, it may still be possible to provide input that does
not conform to the tool’s expectations. If this happens, the tool will give a warning or gray-out
options that cannot be used. The default settings for each tool are suitable for most use cases,
but some settings require knowledge of sample preparation or sequencing technology. Most
problems arise from inappropriate settings. If a tool produces a report, make sure to inspect it,
as it may provide quality control or guidance for how to change settings.

For a full description of running tools, handling results and batch options see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_tools_handling_

results_batching.html.
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http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_tools_handling_results_batching.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_tools_handling_results_batching.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_tools_handling_results_batching.html
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Running workflows

CLC Single Cell Analysis Module provides template workflows for analyzing scRNA-Seq, scATAC-
Seq, and scV(D)J-Seq data in multiple steps. Input can either be selected from the navigation
area or imported using Select files for import. Make sure to select the correct import type.

Follow the instructions in the wizard steps and save the data by specifying a location in the
navigation area. Read more about the provided workflows and how to select proper parameters
in chapter 19 and chapter 20.

For a full description of how to launch workflows and use metadata see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_

individually_in_batches.html.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_individually_in_batches.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_individually_in_batches.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_individually_in_batches.html
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Import and Export
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Chapter 4

Data import

Contents
4.1 Import Cell Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Import Cell Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Import Cell Clonotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Import Expression Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 HDF5 formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Other formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Import Peak Count Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Import Space Ranger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Cell format in importers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Import Immune Reference Segments . . . . . . . . . . . . . . . . . . . . . . . 46

4.8.1 IMSEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8.2 IMGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8.3 Output from Import Immune Reference Segments . . . . . . . . . . . . . 49

This chapter describes import functionality specific to the CLC Single Cell Analysis Module.
For other importers, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Import_data_graphics.html.

Clicking the Import button in the top toolbar will bring up a list of the available importers, see
figure 4.1.
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Figure 4.1: Importers available for formats specific to single cell data are located under Import |
Single Cell Data.

4.1 Import Cell Annotations
The Import Cell Annotations tool can import annotations for each cell. The importer produces
Cell Annotations ( ) that can be used to define groups of cells for use in many tools such as
Differential Expression for Single Cell. Cell Annotations can also be visualized in a Dimensionality
Reduction Plot.

Often the same file can be imported as either Cell Clusters or Cell Annotations. The principal
advantage of Cell Annotations is that they can represent numerical data. An example might be
the probability of a cell being in a particular cell cycle phase.

The importer can be found here:

Import ( ) | Single Cell Data ( ) | Import Cell Annotations ( ) .

The following options are available:



CHAPTER 4. DATA IMPORT 29

• Data file. A single file in .csv, .tsv or .xlsx format. The first row in the file is a header. Each
subsequent row describes a cell. Empty lines are ignored.

• First column defines sample. When this is enabled, the sample name and barcode are
read from the first and second columns in the file, respectively. Otherwise, the first
column is used to extract the barcode and optionally the sample, as defined in Cell format.
Subsequent columns represent categories containing information about the cells.

• Cell format and Sample. How cells are identified, see section 4.7 for more details.

• Matrix (Optional). When a matrix is supplied, the sample name is taken from the matrix. If
the previous options also provide sample names:

– If different from the matrix, the importer fails with an error. This can be useful when
checking that the file being imported matches the supplied matrix.

– Rows in the file describing cells that are not in the matrix are skipped.

Note that the sample name can only be set using only one of the First column defines
sample, Cell format, or Sample options. The Matrix option is mandatory if none of the
previous options is used for defining the sample and then the matrix must be for one
sample only.

4.2 Import Cell Clusters
The Import Cell Clusters tool can import clusters for each cell. The importer produces Cell
Clusters ( ) that can be used to define groups of cells for use in many tools such as Differential
Expression for Single Cell. Cell Clusters can also be visualized in a Dimensionality Reduction
Plot.

Often the same file can be imported as either Cell Clusters or Cell Annotations. The principal
advantage of Cell Clusters is that they can be edited within the Dimensionality Reduction Plot.

The importer can be found here:

Import ( ) | Single Cell Data ( ) | Import Cell Clusters ( ) .

The following options are available:

• Data file. A single file in .csv, .tsv or .xlsx format. The first row in the file is a header. Each
subsequent row describes a cell. Empty lines are ignored.

• First column defines sample. When this is enabled, the sample name and barcode are
read from the first and second columns in the file, respectively. Otherwise, the first
column is used to extract the barcode and optionally the sample, as defined in Cell format.
Subsequent columns represent categories containing information about the cells.

• Cell format and Sample. How cells are identified, see section 4.7 for more details.

• Matrix (Optional). When a matrix is supplied, the sample name is taken from the matrix. If
the previous options also provide sample names:

– If different from the matrix, the importer fails with an error. This can be useful when
checking that the file being imported matches the supplied matrix.
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– Rows in the file describing cells that are not in the matrix are skipped.

Note that the sample name can only be set using only one of the First column defines
sample, Cell format, or Sample options. The Matrix option is mandatory if none of the
previous options is used for defining the sample and then the matrix must be for one
sample only.

• Map clusters to QIAGEN Cell Ontology. When this is enabled, clusters will be translated,
if possible, to the QIAGEN Cell Ontology (see section 8.1). The translation attempts to
match each cluster with a QIAGEN cell type based on the name and known synonyms.
For example, ‘alveolar epithelial cells’ are also called ‘pneumocytes’. If this option is
selected, the ‘alveolar epithelial cells’ cluster, if present, will be named ‘pneumocytes’.
This option can be useful when standardizing clusters from different sources. It is especially
recommended if clusters will be used to extend a QIAGEN Cell Type Classifier using the
Train Cell Type Classifier tool (section 8.3). See figures 4.2 and 4.3 for an example.

Figure 4.2: An example of a file that could be imported with Import Cell Clusters. The file contains
three different clusterings.

Figure 4.3: The result of importing the file shown in figure 4.2 using the option ‘Map clusters to
QIAGEN Cell Ontology’. Note that all cell types have been translated to terms in the QIAGEN Cell
Ontology. For example, ‘T cells’ have been standardized to ‘T lymphocytes’, and ‘alveolar epithelial
cells’ have been standardized to ‘pneumocytes’.

4.3 Import Cell Clonotypes
Several formats produced by Cell Ranger can be imported into a TCR Cell Clonotypes ( ) or
BCR Cell Clonotypes ( ) element using the following importers:

• AIRR: Import Cell Clonotypes in AIRR Format ( ).
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• CSV contig: Import Cell Clonotypes in Cell Ranger Contig Format ( );

The importers can be found here:

Import ( ) | Single Cell Data ( ) | Import Cell Clonotypes ( )

Most options are common to both importers. The following options can be adjusted:

• AIRR rearrangements / Contig annotations. The input .tsv or .csv file, respectively,
following the official Cell Ranger format.

• Reference segments (Optional). A reference data element downloaded from the Reference
Data Manager (see chapter 2) containing the corresponding QIAGEN V, D, J and C genes.
When supplied, the gene names in the input file will be mapped to those used in the
provided element. This is important when comparing imported Cell Clonotypes with those
produced by the CLC Single Cell Analysis Module, see section 13.5.

• Cell format and Sample. How cells are identified, see section 4.7 for more details.

• Matrix (Optional). The sample name will be obtained from the supplied matrix. The importer
does not check that the barcodes present in the input file match those in the matrix. If the
matrix contains multiple samples, the importer will fail with a relevant message.

If sample name is not defined through either Cell format, Sample, or Matrix, the importer
sets the sample name to the name of the input file. The sample name can be set using
only one of these three options.

When matched scRNA-Seq data is available, it is important that the Cell Clonotypes and
corresponding Expression Matrix/Dimensionality Reduction Plot have the same sample
name, see section 13.6.

Note that the productive status is calculated from the CDR3 amino acid sequence found in the
input file.

4.4 Import Expression Matrix
Several formats can be imported into an Expression Matrix ( ) using the following importers:

• AnnData: Import Expression Matrix in AnnData format ( );

• Cell Ranger HDF5: Import Expression Matrix in Cell Ranger HDF5 format ( );

• CSV: Import Expression Matrix in CSV/TXT format ( );

• h5Seurat: Import Expression Matrix in h5Seurat format ( );

• Loom: Import Expression Matrix in Loom format ( );

• MEX: Import Expression Matrix in MEX format ( );

• MEX archive: Import Expression Matrix in MEX format (archive) ( );
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• Parse Biosciences MTX: Import Expression Matrix in ParseBio MTX format ( ).

The importers can be found here:

Import ( ) | Single Cell Data ( ) | Import Expression Matrix ( )

Some other commonly encountered formats are specific to a programming language or software
package. These can usually be exported from that software package as Loom files. For example,
.rds/.Robj formats are from the R programming language and can often be written to Loom using
the LoomR package, or methods in the same R package that was used to generate the files.

General options

The following options are common to all expression matrix importers:

• Gene or Transcript track. Genes or transcripts in the imported data are matched with
features in the provided track to the extent possible. When a match is found, the genomic
coordinates of the gene/transcript will be recovered. Matches are only found when the
identification of the gene/transcript in the imported data with the feature in the track is
unambiguous: one-to-many and many-to-one matches between the imported data and the
provided track are not supported. This means, for example, that if a gene is present on two
chromosomes of the track, then neither set of genomic coordinates will be recovered.

Matching is used to:

– View the Expression Matrix as a Track. For more information on tracks, see http://

resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=

Tracks.html.

– Define the mitochondrial chromosome when calculating the proportion of reads mapped
to mitochondria in the QC for Single Cell tool (section 7.2.2).

– Recover identifiers (e.g. ENSG00000243485 for ENSEMBL genes) when these are not
present in the input data. As identifiers are often more specific than e.g. gene names,
this can help when training Cell Type Classifiers using the Train Cell Type Classifier
tool (section 8.3), and when predicting cell types using a Cell Type Classifier.

Although it is generally beneficial to provide a Gene or Transcript track that matches many
of the genes or transcripts in the imported data, it is still possible to analyze data in the
CLC Single Cell Analysis Module even when no matches are found.

The matching algorithm works by choosing an approach from the following list that maximizes
the number of one-to-one matches between features in the provided track and features in
the imported data:

– Matching names from the track with identifiers from the imported data

– Matching identifiers from the track with identifiers from the imported data

– Matching names from the track with unversioned identifiers from the imported data.
An unversioned identifier is obtained by removing anything from or after the first ‘.’
in the identifier. For example, ENSG00000243485 is the unversioned identifier for
ENSG00000243485.5.

– Matching identifiers from the track with unversioned identifiers from the imported data

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Tracks.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Tracks.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Tracks.html
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– Matching names from the track with names from the imported data

– Matching identifiers from the track with names from the imported data

In the case of a tie, the first equally good approach from the above list is used. If no
matches are found, check that the correct Gene or Transcript track has been supplied.

• Spike-in controls (Optional). Genes or transcripts in the imported data are also matched
against the spike-in controls provided here. This is used when calculating the proportion
of reads mapped to spike-in controls in the QC for Single Cell tool (section 7.2.2). It
is also used to remove the spike-in controls from downstream analysis. For details
on how to import spike-in controls, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Import_RNA_spike_in_controls.html.

• Cell format and Sample. How cells are identified. See section 4.7 for more details. When
a file contains multiple samples, it is recommended to extract the sample name from
the cell name. This allows the QC for Single Cell to process each sample separately,
enables coloring of cells by sample in the Dimensionality Reduction Plot, and may simplify
configuration of batch correction.

Options for importing cell annotations and clusters

AnnData, h5Seurat, Loom, and ParseBio MTX can contain metadata about cells, and this can
be imported as Cell Annotations ( ) or Cell Clusters ( ). These importers share the following
options:

• Create clusters for. A comma-separated list of attributes to be imported as Cell Clusters.
Any other cells metadata will be imported as Cell Annotations.

• Map clusters to QIAGEN Cell Ontology. When this is enabled, clusters will be translated,
if possible, to the QIAGEN Cell Ontology (see section 8.1). The translation attempts to
match each cluster with a QIAGEN cell type based on the name and known synonyms.
For example, ‘alveolar epithelial cells’ are also called ‘pneumocytes’. If this option is
selected, the ‘alveolar epithelial cells’ cluster, if present, will be named ‘pneumocytes’.
This option can be useful when standardizing clusters from different sources. It is especially
recommended if clusters will be used to extend a QIAGEN Cell Type Classifier using the
Train Cell Type Classifier tool (section 8.3).

Options for importing spliced and unspliced counts

Loom and MEX formats can contain both the total expression, spliced, and unspliced counts. The
importers can be configured with which type of data to import and produce either an Expression
Matrix ( ), or an Expression Matrix with spliced and unspliced counts ( ).

• Import expressions. Enables import of total expression from the relevant file. This is
needed when:

– spliced/unspliced counts are not available;

– the total expression of a gene cannot be obtained purely from the spliced and, if
selected, unspliced counts. For example, the expression has been normalized.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_RNA_spike_in_controls.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_RNA_spike_in_controls.html
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• Import spliced/unspliced. Enables import of spliced and unspliced counts from the relevant
file(s). If the file(s) do not contain spliced/unspliced counts, the import will fail with a
relevant message.

• Include unspliced counts in total expression. By default, the total expression of a gene
is obtained from the spliced counts. When this option is enabled, the unspliced counts
are also added to the total expression. This option is recommended for single nucleus
RNA sequencing (snRNA-Seq), where data is usually analyzed by counting expression from
both exons and introns [Bakken et al., 2018]. This option has no effect when both ‘Import
expressions’ and ‘Import spliced/unspliced’ are enabled, where the total expression is
read directly from the file.

4.4.1 HDF5 formats

AnnData, Cell Ranger HDF5, h5Seurat and Loom are HDF5 formats, with specific requirements
regarding structure of the data. An HDF5 file is organized in a hierarchical structure with:

• groups, containing zero or more groups or datasets;

• datasets: multidimensional arrays of data elements.

Metadata for groups and datasets is stored in associated attribute lists. Groups and datasets
can often be themselves semantically interpreted as attributes.

All HDF5 importers contain an Expression matrix option, used for specifying the HDF5 file to be
imported.

AnnData importer

The expression matrix in an AnnData (h5ad) is in a sparse dataset ‘X’, while features and
cells are described using the ‘var’ and ‘obs’ groups, respectively. See https://anndata.
readthedocs.io/ for more details.

The ‘_index’ attribute on group ‘obs’ defines the cell identification, and the interpretation of this
is specified by the Cell format.

• Gene or transcript ID attribute (Optional). A ‘var’ attribute describing an identifier for a
gene or transcript (e.g., ENSG00000243485 for ENSEMBL).

• Gene or transcript name attribute (Optional). A ‘var’ attribute describing the name for a
gene or transcript. If left empty, the ‘_index’ attribute on group ‘var’ is used.

h5Seurat importer

A h5seurat file may contain multiple assays and each assay may contain multiple expres-
sion matrices, e.g., counts and normalized expressions. The matrices can be sparse or
dense. See https://mojaveazure.github.io/seurat-disk/articles/h5Seurat-
spec.html for more details.

Only one assay and matrix can be imported at a time. The h5Seurat importer expects the format
version 4.0.0.

https://anndata.readthedocs.io/
https://anndata.readthedocs.io/
https://mojaveazure.github.io/seurat-disk/articles/h5Seurat-spec.html
https://mojaveazure.github.io/seurat-disk/articles/h5Seurat-spec.html
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The ‘cell.names’ attribute contains the cell identification, and the interpretation of this is specified
by the Cell format. If the sample is not set through Cell format or Sample, the sample for each
cell is read from the ‘orig.ident’ attribute on group ‘meta.data’.

The gene or transcript names are read from the ‘features’ attribute of the selected assay.

• Assay (Optional). The name of the assay to import. If left empty, the assay in the
‘active.assay’ attribute will be used.

• Import expressions from (Optional). The matrix for the selected assay to import. The matrix
may be sparse (e.g., ‘counts’ or ‘data’) or dense (e.g., ‘scale.data’). If left empty, the
importer will use ‘counts’.

Loom importer

A Loom file has an internal structure consisting of a main matrix, optional ‘layers’ of the same size
as the main matrix and row and column attributes (describing features and cells, respectively). See
https://linnarssonlab.org/loompy/format/index.html for details on the format.

The Loom importer expects the Loom format version 3.0.0.

• Spliced layer. The layer where the spliced counts are stored.

• Unspliced layer. The layer where the unspliced counts are stored.

• Cell ID attribute (Optional). A column attribute identifying the cell by its barcode and
sample. The interpretation of this value is specified by the Cell format.

• Gene or transcript ID attribute (Optional). A row attribute describing an identifier for a gene
or transcript (e.g., ENSG00000243485 for ENSEMBL).

• Gene or transcript name attribute. A row attribute describing the name for a gene or
transcript. If no names are present, then it is also possible to set this to the same value
as the Gene or transcript ID attribute.

4.4.2 Other formats

CSV importer

The CSV/TXT importer supports import of text data in a full table format.

• Expression matrix. A single file to be imported.

• Table layout. Choose whether the table has cells in columns and features in rows, or is
transposed such that features are in columns and cells are in rows.

• Separator. Choose the column separator.

Working with spreadsheets Be careful to check that all the data is present before import
if the file originates from a spreadsheet program. Such programs often impose limits on
the number of rows and columns.

https://linnarssonlab.org/loompy/format/index.html
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MEX importer

The MEX importer requires at least two files to be supplied:

• Barcodes file. A file with the extension .tsv and tab-separated columns, with one row per
barcode. It can optionally contain a header. The barcodes are read from the first column.
Empty lines are ignored.

Use the Cell format option to control how the barcodes should be interpreted - for example
if it also includes information about the sample.

• Feature file. A file with the extension .tsv and one row per feature. It can optionally contain
a header. Empty lines are ignored.

It contains multiple tab-separated columns:

– One column: the feature name.

– Two columns: the feature identifier and name.

– Three columns: the feature identifier, name, and type. Of the commonly used feature
types, "Gene Expression", "Transcript Expression", and "Spike-in" are the most
important ones. Other features, such as "Antibody Capture" will be silently ignored by
most tools.

For 10x Multiome files there will be six columns. The last three consist of genome
coordinates and will be ignored. Lines with feature type "Peaks" will also be ignored. They
should instead be imported as a Peak Count Matrix (see section 4.5).

• Matrix file. A file containing the expression with the extension .mtx in the Matrix Market
Exchange Coordinate Format.

• Matrix file (spliced). A file containing the spliced counts with the extension .mtx in the
Matrix Market Exchange Coordinate Format.

• Matrix file (unspliced). A file containing the unspliced counts with the extension .mtx in
the Matrix Market Exchange Coordinate Format.

• Name. The name of the imported matrix. If Cell format is not configured to parse a sample
name from each barcode in the barcodes file, then this will also be the sample name for
all the imported barcodes.

• Files are in same directory. This option is provided for convenience. When enabled,
updating any one of the three files to a file in a new directory will lead to automatic updates
of the other two files, if suitable candidates can be found in the same directory. This option
only works for local files.

For all three .mtx files, the features must be in the first dimension (rows) and cells in the second
(columns). See https://math.nist.gov/MatrixMarket/formats.html for details of
the Matrix Market Exchange Coordinate Format.

See additional details in the ‘Options for importing spliced and unspliced counts’ section on how
the total expression is calculated.

https://math.nist.gov/MatrixMarket/formats.html
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MEX archive importer

The MEX archive importer is provided for convenience. A .zip, .tar or .tar.gz archive file can be
provided in the Archive file containing the files required by the MEX importer. In order to uniquely
identify each file, these must have a specific name:

• Barcodes file must be named barcodes.tsv

• Feature file must either be named features.tsv or genes.tsv

• Matrix file must be named matrix.mtx

• Matrix file (spliced) must be named spliced.mtx

• Matrix file (unspliced) must be named unspliced.mtx

The importer can be configured to either import an Expression Matrix ( ), or an Expression
Matrix with spliced and unspliced counts ( ). For the first option, ‘Import expressions’ must
be enabled, while for the second option, ‘Import spliced/unspliced’ must be enabled.

Either the ‘Matrix file’, or ‘Matrix file (spliced)’ and Matrix file (unspliced)’ can be missing from
the archive, depending on how the importer has been configured.

For all three .mtx files, the features must be in the first dimension (rows) and cells in the second
(columns). See https://math.nist.gov/MatrixMarket/formats.html for details of
the Matrix Market Exchange Coordinate Format.

See additional details in the ‘Options for importing spliced and unspliced counts’ section on how
the total expression is calculated.

ParseBio MTX importer

The ParseBio MTX importer requires three files to be supplied:

• Cell metadata file. A file with the extension .csv and comma separated columns, with
one row per barcode. It must contain headers. The following options relating to the cell
metadata file are available:

– Barcode column. The name of the column containing the barcodes.
– Cell metadata has sample name. If checked, the sample name is read from the file.

Otherwise, the sample name is defined by the general options (see section 4.7).
– Sample column (Optional). The name of the column containing the sample names.

• Feature file. A file with the extension .csv and comma separated columns, with one row
per feature. The following options relating to the feature file are available:

– Feature id column (Optional). The name of the column containing the feature identifiers
(e.g., ENSG00000243485 for ENSEMBL).

– Feature name column.The name of the column containing the feature names.

• Matrix file. A file containing the expression with the extension .mtx in the Matrix Market
Exchange Coordinate Format. Cells must be in the first dimension (rows) and features in the
second (columns). See https://math.nist.gov/MatrixMarket/formats.html
for details of the Matrix Market Exchange Coordinate Format.

https://math.nist.gov/MatrixMarket/formats.html
https://math.nist.gov/MatrixMarket/formats.html
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4.5 Import Peak Count Matrix
Several formats can be imported into a Peak Count Matrix ( ) using the following importers:

• Cell Ranger HDF5: Import Peak Count Matrix in Cell Ranger HDF5 format ( );

• MEX: Import Peak Count Matrix in MEX format ( );

• MEX archive: Import Peak Count Matrix in MEX format (archive) ( ).

The importers can be found here:

Import ( ) | Single Cell Data ( ) | Import Peak Count Matrix ( )

General options

Figure 4.4: The Cell Ranger Peak Count importer. The General options are common to all the peak
matrix importers.

The following options are common to all peak matrix importers (figures 4.4 and 4.5):

• Gene track Positions in the imported data are matched with the provided track.

Matching is used to:

– View the Peak Count Matrix as a Track. For more information on tracks, see http://

resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=

Tracks.html.

– Identify nearby genes if these are not explicitly supplied.

• Cell format and Sample: How cells are identified. See section 4.7 for more details.

• Nearby genes Nearby genes are determined in one of two ways:

– By searching for nearby genes using the Gene track and an accompanying mRNA track

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Tracks.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Tracks.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Tracks.html
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Figure 4.5: Additional options common to all the peak matrix importers.

– By supplying nearby genes in a selected tab-separated file (.tsv).

The file must consist of either:

– 6 columns: name of the chromosome prefixed with "chr" (e.g., "chr1"), start and end
position of the peak, the name of the gene, distance and type of peak.

– 4 columns: name of the chromosome together with start and end positions of the
peak (e.g., "chr1:123-456"), the name of the gene, distance and type of peak.

The first line must be column headers.

The distance is the number of base positions from the start or end of the peak to the start
or end of the gene, whichever is closest. It is signed and will be negative if the peak is
before the gene.

The type of the peak can be either "promoter" or "distal". Other values are ignored.

If there are multiple nearby genes per peak, they can either be on separate lines or be
grouped on one line, with gene name, distance and peak types separated by semi-colon.

• Transcription factors If enabled, transcription factors will be imported from the selected
tab-separated bed file. Each line consists of the name of the chromosome (e.g., "chr1"),
start and end positions of the peak, and the name of the transcription factor.

If not enabled, the peak matrix will not have transcription factors.

The data to be imported may either consist of peak data only or it may be a mixture of peaks and
gene expressions, as is the case for 10x Multiome files. In the latter case, the gene expressions
must be imported into a separate Expression Matrix (see section 4.4).

MEX importer

The MEX importer requires three files to be supplied:
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• Barcodes file A file with the extension .tsv and tab-separated columns, with one row per
barcode. It can optionally contain a header. The barcodes are read from the first column.
Empty lines are ignored.

Use the Cell format option to control how the barcodes should be interpreted - for example
if it also includes information about the sample.

• Feature or peak file This should be one of:

– A feature file with extension .tsv and six tab-separated columns, with one row per
feature or peak. These are relevant for mixtures of peaks and expressions, e.g.
10x Multiome. The columns are: identifier (e.g., "chr1:123-456"); name (same as
identifier for peaks); type, e.g. "Gene Expression" or "Peaks"; chromosome (e.g.,
"chr1"); start and end position of the feature or peak. The file can optionally contain
a header. Empty lines are ignored.

– A peak file with extension .bed and three tab-separated columns: the chromosome,
start and end position.

• Matrix file A file containing the expression with the extension .mtx in the Matrix Market
Exchange Coordinate Format.

See https://math.nist.gov/MatrixMarket/formats.html for details of the Matrix
Market Exchange Coordinate Format.

MEX archive importer

The MEX archive importer is provided for convenience. It accepts a .zip, .tar or .tar.gz archive file
containing the files required by the MEX importer. In order to uniquely identify each file, these
must have a specific name:

• Barcodes file must be named barcodes.tsv

• Feature or peak file must either be named features.tsv or peaks.bed

• Matrix file must be named matrix.mtx

The nearby genes and/or transcription factors can be passed in as separate files as is common
to all the importers.

Alternatively, they can be included in the archive file. Then that should be indicated with checkbox
"Archive has peak annotations" respectively "Archive has peak-motif associations". The file
names must match a specific pattern:

• Nearby genes file must end with peak_annotation.tsv

• Transcription factor file must end with peak_motif_mapping.bed

This can be relevant for importing an archive produced by the peak matrix exporter using
compression (see section 5.7). It may also be necessary when passing multiple files to a
batching or iterating workflow (see section 20.2).

https://math.nist.gov/MatrixMarket/formats.html
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Figure 4.6: Options for nearby genes and transcription factors for the MEX archive importer

4.6 Import Space Ranger
The Import Space Ranger tool can import spatial transcriptomics data from Space Ranger spatial
outputs containing processed tissue images and barcode locations in those images. The importer
produces a Spatial Transcriptomics Plot ( ) (see section 11.1).

The importer can be found here:

Import ( ) | Single Cell Data ( ) | Import Spatial Transcriptomics ( ) | Import
Space Ranger ( )

The following options are available:

• Tissue positions. A file with the extension .csv and comma separated columns, with one
row per barcode. It may optionally contain headers.

Information is extracted from the following columns in the file, either using the column
numbers or the headers, when present:

– Column 1 or barcode: the barcode.

– Column 2 or in_tissue: zero or one indicating whether the barcode is present in the
tissue. Rows with zero are ignored.

– Column 5 or pxl_row_in_fullres: the y position in the full resolution image.

– Column 6 or pxl_col_in_fullres: the x position in the full resolution image.

• Include image. Include a processed tissue image when checked.

– Processed image file. A processed tissue image in png format.

– Scale factors file. A JSON file containing a map with scale factors for processed tissue
images. The imported scale factors are for the map key that has the longest common



CHAPTER 4. DATA IMPORT 42

subsequence with the name of the tissue image. For example, for a tissue image file
tissue_hires_image.png, the key typically is tissue_hires_scalef.

• Cell format and Sample. How cells are identified, see section 4.7 for more details.

• Matrix (Optional). The sample name will be obtained from the supplied matrix. The importer
does not check that the barcodes present in the input file match those in the matrix. If the
matrix contains multiple samples, the importer will fail with a relevant message.

The sample name has to be defined through either Cell format, Sample, or Matrix. The
sample name can be set using only one of these three options.

It is important that the Spatial Transcriptomics Plot and corresponding Expression Ma-
trix/Dimensionality Reduction Plot have the same sample name, see section 11.1.

4.7 Cell format in importers
All importers in the CLC Single Cell Analysis Module import information about cells. Cells are
identified by a combination of their barcode, e.g. "AAGCT", and their sample name.

Importers share the following common options:

• Cell format. This option allows the barcode and the sample name to be extracted separately
from the name of the cell. By default, the name of the cell is used as the barcode. For matrix
importers, the sample name is set to the name of the imported file. For the remaining
importers, the sample name has to be provided through one of multiple options.

The cell format is specified by using a mixture of keywords (see figure 4.7) and text, see
table 4.1 and figure 4.8 for examples.

Figure 4.7: Keywords that can be used to specify how to extract the barcode and sample name for
a cell.

• Sample (Optional). This can be used for specifying a custom sample name. It should only
be used when the file contains just one sample. It overrides the default sample name.

This is relevant e.g. when jointly analyzing an imported Expression Matrix and Peak Count
Matrix, where cells must have the same sample name.

Importers contain a Preview cells section showing the parsing of cell names into sample and
barcode, as shown in figure 4.9.



CHAPTER 4. DATA IMPORT 43

Cell format Name of the cell Sample Barcode
{barcode}-1 AAGCT-1 - * AAGCT
{sample}-{barcode} demo-AAGCT demo AAGCT
{sample}-{barcode} demo-AAGCT demo AAGCT
{sample}-{barcode} de-mo-AAGCT de mo-AAGCT
{sample}-{barcode:trailing} de-mo-AAGCT de-mo AAGCT
{barcode:1}-{sample}-{barcode:2} AA-demo-GCT demo AAGCT
{barcode}-{sampleSuffix} AAGCT-1 demo-1 ** AAGCT

Table 4.1: Examples of cell formats and the resulting samples and barcodes. * The sample
is obtained either from the name of the imported file, for matrices, or from the other sample
options. ** This example assumes a matrix file named "demo.h5".

Figure 4.8: The top panel shows the results of importing a matrix file with Cell format = {barcode}.
After import, the sample name is the name of the file that was imported, and the barcode is the
entire name of the cell. In the bottom panel, Cell format = SRX41800{sample}_filter.{barcode}.
Here, the sample name and the barcode are extracted from the name of the cell, and other parts
of the name are discarded.

This can be helpful for ensuring the provided cell format matches the input. Figure 4.10 shows
an example where the sample and barcode have clearly been swapped, while in figure 4.11, the
sample and barcode cannot be identified for one of the cells, because the cell name does not
match the cell pattern.

If the configuration in the wizard is invalid, the preview may fail to determine the sample and/or
barcode for all cells, as shown in figure 4.12.

The preview can be disabled if not needed. This is useful for input files that are large, where
generating the preview may take some time.
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Figure 4.9: Previewing how the cell name (input barcode) resolves to sample and barcode.

Figure 4.10: Preview where the sample and barcode have been swapped
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Figure 4.11: Preview where a cell does not match the pattern. The tooltip contains a detailed error
message.

Figure 4.12: Preview where the sample cannot be determined. The tooltip indicated why and it will
typically match a validation error from the wizard. Here, the sample is specified in two ways. The
barcode can still be determined.
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4.8 Import Immune Reference Segments
The Import Immune Reference Segments tool can import reference sequences for V, D, J and C
gene-segments from a fasta file. The sequences are needed when running Single Cell V(D)J-Seq
Analysis (section 13.1) for either T or B cell receptor repertoires (TCR and BCR, respectively).

The importer can be found here:

Import ( ) | Import Immune Reference Segments ( ) .

The importer can be used to import fasta files that are either in the IMSEQ [Kuchenbecker et al.,
2015] or IMGT [Lefranc et al., 2009] format (see figure 4.13).

Figure 4.13: The available options when importing immune reference segments.

Both formats support allele numbering for the gene segments. If Import only the first allele is
ticked, only segments without an allele or those with an allele defined as the number "1" (i.e
"01" is also valid) will be imported. Otherwise, all segments are imported.

The two formats differ in how the sequence header is parsed for identifying the gene segment and
related information, and how the conserved amino acids in the V and J segments are identified.

When saving the results, the reference data for either TCR, or BCR, or both, can be saved. The
wizard will show an error message if an output option is ticked for which no relevant reference
sequences are available.

The importer can only handle one fasta file at a time, but if two or more fasta files are imported,
the resulting sequence lists can subsequently be combined to one list using the Create Sequence
List tool.

4.8.1 IMSEQ

For the IMSEQ format, the header contains the following elements, separated by "|":

• The chain: TRA, TRB, TRG or TRD for T cells, and IGH, IGK and IGL for B cells.
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• The segment type: V, D, J, C.

• The segment ID. For B cells constant genes, the segment ID should also contain the letter
corresponding to the encoded isotype.

• The segment allele.

• For J and V segments, the position of the first base of the conserved amino acid, counting
from 0.

Currently only the heavy (IGH) and light κ and λ (IGK and IGL) chain types are supported for B
cells.

Any segments with an unsupported chain or segment type are silently ignored.

4.8.2 IMGT

For the IMGT format, the header contains 15 elements, separated by "|". Only the following are
read and used during import:

• (1) Accession number(s).

• (2) The segment name, including chain, segment type, ID and allele, in the format:
<chain><type><ID>*<allele>, for example "TRAV1*01".

Chain and segment type are the same as for IMSEQ. For B cells constant genes, the
segment type contains instead the letter corresponding to the encoded isotype.

• (3) Species.

• (4) Allele functionality: F (functional), P (pseudogene) or ORF (open reading frame).

• (5) Extracted label(s): EX1, CH1 and C-REGION for C segments, and V-REGION, D-REGION,
J-REGION for V, D, J segments, respectively.

• (8) The start of the codon, counting from 1, or "NR" for non coding labels.

• (9) The number of nucleotides added in 5’ in the format +n.

The IMGT database contains chains, segment types and labels that are not listed above and are
not supported. These are silently ignored.

While the IMSEQ format provides the position of the conserved amino acid, this needs
to be calculated for the IMGT format. For this, the V region needs to be provided with
gaps such that the conserved amino acid is found at approximately position 104 in the
translated amino acid sequence. When downloading sequences from the IMGT database
in fasta format, the "F+ORF+in-frame P nucleotide sequences with IMGT gaps" should
be used. Alternatively, the corresponding "nt-WithGaps-F+ORF+inframeP" flat file can be
downloaded from IMGT/GENE-DB.

If using custom reference data that is not downloaded from the IMGT database, it is
recommended to use the IMSEQ format and specify the position of the conserved amino
acid.
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When importing files in the IMGT format, the following options are available (see figure 4.13):

• Which allele functionality(ies) should be imported. At least one must be chosen.

• Which species should be imported. After choosing the fasta file, the desired species can
be chosen from the list of species identified in the file.

If element (9) in the header is not empty, the corresponding number of nucleotides are removed
from the 5’ end of the sequence.

Identification of the conserved amino acid

The nucleotide sequence (with IMGT gaps for the V segments), starting from position in element
(8) in the header, is first translated to amino acids using the standard genetic code. The position
of the conserved amino acid is calculated, and, if identified, translated to the position of the first
nucleotide in the corresponding codon. Segments where the amino acid cannot be identified are
silently ignored.

For the V segments, the amino acid position is calculated as follows:

• If the amino acid at position 104 is C, then position 104 is used.

• Otherwise, the position of the last occurrence of C after position 104 is used, if present.

• Otherwise, if the amino acid at position 104, 105 or 103 (in this order) is one base pair
mutation away from C and not a stop codon (i.e. R, S, C, F, G, W, Y), then this position is
used.

For the J segments, all 3 open reading frames (starting from nucleotide position 1, 2 or 3) are
used. Note that "." below denotes any amino acid. The amino acid position is calculated as
follows:

• The amino acid sequence "(F|W)G.G", if present, is identified.

– The open reading frame that contains the amino acid sequence, no stop codon and
has the lowest nucleotide starting position, if any, is used.

– Otherwise, the open reading frame that contains the amino acid sequence and at least
one stop codon, if any, is used. If multiple open reading frames match this criteria,
none are used.

• Otherwise, the amino acid sequences "(F|W)X.G" and "(F|W)G.X", if present, are identified.
Here, X denotes the amino acids that are one base pair mutation away from F/W and not a
stop codon (i.e. A, R, S, C, D, E, V, W).

– For each of the two amino acid sequences, the position is calculated as above.

– If both amino acid sequences are present, the position that is closest to the end of
the sequence is used.

V and J segments for which the amino acid position cannot be successfully identified are silently
ignored.



CHAPTER 4. DATA IMPORT 49

4.8.3 Output from Import Immune Reference Segments

The importer outputs a sequence list that can be used for immune repertoire analysis. These
can be added to a custom reference data set, to be used in workflows. See http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html for
details.

The sequence list contains the reference sequences for the V, D, J and C segments, named in
the format <chain>-<type>-<ID>*<allele>, for example "TRA-V-1*01". Note that for B
cells constant genes, the letter corresponding to the encoded isotype will be used instead of the
segment type.

If the gene segment does not have an allele or Import only the first allele is ticked, *<allele>
is not added to the name.

By ticking "Show annotations" and "Region" in the Side Panel "Annotation layout" and "Annotation
types" groups, respectively, the location of the conserved amino acid can be visualized (see
figure 4.14).

Figure 4.14: Visualizing the location of the conserved amino acid.

The table view of the sequence list shows the chain and segment type of each sequence, and
for the IMGT format, also the accession number(s) and species (see figure 4.15).

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
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Figure 4.15: Table view of imported sequence list showing the name, species and accession
number when imported using the IMGT format.
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This chapter describes only exporters functionality specific to the CLC Single Cell Analysis Module.

Exporters exist for exporting Expression Matrix ( ) / ( ) to the following formats:

• Cell Ranger HDF5. It is the most used format for single cell expression matrices and
compatible with most open source tools. It is a highly compressed binary data structure
that is easy to navigate compared to text formats like MEX.

• Loom. A format that in addition to the Expression Matrix, raw or normalized, offers to export
cell cluster and cell annotation information. This is useful for third party visualization tools.

• AnnData. An HDF5 format used by e.g. Scanpy.

• h5Seurat. An HDF5 format used by Seurat.

• MEX. A format for export of raw or normalized Expression Matrices with barcode and genes
listed in .tsv files for indexing.

• TXT. A plain-text format for export of raw Expression Matrices with comma, semicolon or
tab-separation.

51
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Note: While it is possible to export normalized expression values, this is only provided
for interoperability with other software. If such values are re-imported, the resulting
Expression Matrix may not work as intended in tools that assume values look like counts
(such as Normalize Single Cell Data) or are equal to or larger than zero (such as Predict
Cell Types). For this reason, when sharing data with other users of CLC Single Cell
Analysis Module, it is recommended to export in CLC format. This preserves both the raw
expression values and the normalized values.

Additionally, exporters exist for exporting a Peak Count Matrix ( ) to Cell Ranger HDF5 and
MEX.

To launch the export toolbox use the menu or click the Export button in the top left corner of the
Workbench. To export an expression or peak matrix, start typing "matrix" to get to the selection,
see figure 5.1.

Figure 5.1: Exporters available for exporting single cell expression matrices

5.1 Export Cell Ranger HDF5 Expression Matrix
For export in Cell Ranger HDF5 format, a number of options can be specified (figure 5.2):

• Cell format. Can be specified to include both the sample and barcode. Hover the mouse
over this setting to see the possible options. Often the barcode in itself is sufficient as a
unique identifier of cells. However, when an expression matrix contains multiple samples,
the cell format must also include the sample, otherwise the export will fail.

• Use compression. Select among gzip, zip or no compression which is default.

• Output file name. Shows the name of the file. This can be customized by changing the
default pattern in Custom file name.
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Figure 5.2: Options for export of expression matrix in Cell Ranger HDF5 format.

5.2 Export AnnData Expression Matrix
For export in AnnData format (h5ad), a number of options can be specified (figure 5.3):

Figure 5.3: Options for export of expression matrix in h5ad format.

• Cell format. Can be specified to include both the sample and barcode. Hover the mouse
over this setting to see the possible options. Often the barcode in itself is sufficient as a
unique identifier of cells. However, when an expression matrix contains multiple samples,
the cell format must also include the sample, otherwise the export will fail.

• Use compression. Select among gzip, zip or no compression which is default.

• Output file name. Shows the name of the file. This can be customized by changing the
default pattern in Custom file name.
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The AnnData exporter produces an hdf5 file with:

• Feature names written at var/index.

• Feature ids written at var/gene_ids.

5.3 Export h5Seurat Expression Matrix
For export in h5Seurat format (h5seurat), a number of options can be specified (figure 5.4):

Figure 5.4: Options for export of expression matrix in h5seurat format.

• Cell format. Can be specified to include both the sample and barcode. Hover the mouse
over this setting to see the possible options. Often the barcode in itself is sufficient as a
unique identifier of cells. However, when an expression matrix contains multiple samples,
the cell format must also include the sample, otherwise the export will fail.

• Clusters. A Cell Clusters ( ) element to be exported with the matrix.

• Cell annotations. A Cell Annotations ( ) element to be exported with the matrix.

• Use compression. Select among gzip, zip or no compression which is default.

• Output file name. Shows the name of the file. This can be customized by changing the
default pattern in Custom file name.

The h5Seurat exporter creates a h5seurat file format version 4.0.0, see https://mojaveazure.
github.io/seurat-disk/articles/h5Seurat-spec.html for details. In particular:

• A single assay at assays/RNA is created.

• The feature names are written at assays/RNA/features.

https://mojaveazure.github.io/seurat-disk/articles/h5Seurat-spec.html
https://mojaveazure.github.io/seurat-disk/articles/h5Seurat-spec.html
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• The raw counts are written as a sparse matrix at assays/RNA/counts.

• The cell ID, composed of sample and barcode, as specified by Cell format, is written at
cell.names.

• The cells’ samples are written at meta.data/orig.ident.

• Any exported clusters and annotations are written as additional HDF5 groups at meta.data.

5.4 Export Loom Expression Matrix
For export in Loom format, a number of options can be specified (figure 5.5):

Figure 5.5: Options for export of expression matrix in Loom format.

• Cell format. Can be specified to include both the sample and barcode. Hover the mouse
over this setting to see the possible options. Often the barcode in itself is sufficient as a
unique identifier of cells. However, when an expression matrix contains multiple samples,
the cell format must also include the sample, otherwise the export will fail.

• Clusters. A Cell Clusters ( ) element to be exported with the matrix.

• Cell annotations. A Cell Annotations ( ) element to be exported with the matrix.

• Export normalized. If selected and the matrix has been normalized with Normalize Single
Cell Data (see section 7.3), the normalized expressions will be exported instead of the raw
counts. If the matrix has not been normalized, the export will fail.

• Use compression. Select among gzip, zip or no compression which is default.
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• Output file name. Shows the name of the file. This can be customized by changing the
default pattern in Custom file name.

The Loom exporter creates a Loom file in format version 3.0.0, see https://linnarssonlab.
org/loompy/format/index.html for details. In particular:

• The version number is written as an HDF5 dataset at /attrs/LOOM_SPEC_VERSION.

• The expression data, either raw counts or normalized, is written as an HDF5 dataset at
/matrix.

• When exporting an Expression Matrix ( ), an empty layers HDF5 group is created.

• When exporting an Expression Matrix with spliced and unspliced counts ( ), the
spliced and unspliced counts are written as HDF5 datasets at /layers/spliced and
/layers/unspliced, respectively.

• The cell ID, composed of sample and barcode, as specified by Cell format, is written as an
HDF5 group at col_attrs/CellID.

• The feature IDs and names are written as HDF5 groups at col_attrs/Accession and
col_attrs/Gene, respectively.

• Any exported clusters and annotations are written as additional HDF5 groups at col_attrs.

5.5 Export MEX Expression Matrix
For export in MEX format, a number of options can be specified (figure 5.6):

Figure 5.6: Options for export of expression matrix in Mex format.

• Cell format. Can be specified to include both the sample and barcode. Hover the mouse
over this setting to see the possible options. Often the barcode in itself is sufficient as a

https://linnarssonlab.org/loompy/format/index.html
https://linnarssonlab.org/loompy/format/index.html
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unique identifier of cells. However, when an expression matrix contains multiple samples,
the cell format must also include the sample, otherwise the export will fail.

• Export normalized. If selected and the matrix has been normalized with Normalize Single
Cell Data (see section 7.3), the normalized expressions will be exported instead of the raw
counts. If the matrix has not been normalized, the export will fail.

• Use compression. Select among gzip, zip or no compression which is default.

• Output file name. Shows the name of the file. This can be customized by changing the
default pattern in Custom file name. The default configuration will export to a sub-directory
named after the expression matrix ({name}).

The export outputs barcodes, features, and expressions to barcodes.tsv, features.tsv, and
matrix.mtx, respectively. If the matrix is an Expression Matrix with spliced and unspliced
counts ( ), two additional files are produced containing spliced (spliced.mtx) and unspliced
(unspliced.mtx) counts.

5.6 Export TXT Expression Matrix
Expression matrices can be exported in plain-text format, typically as a comma-separated file
(CSV). A number of options can be specified (figures 5.7 and 5.8):

Figure 5.7: Options for export of expression matrix in plain-text format. Additional options are
available in the next wizard.

• Cell format. Can be specified to include both the sample and barcode. Hover the mouse
over this setting to see the possible options. Often the barcode in itself is sufficient as a
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Figure 5.8: Additional options for export of expression matrix in plain-text format.

unique identifier of cells. However, when an expression matrix contains multiple samples,
the cell format must also include the sample, otherwise the export will fail.

• Feature format. Choose whether the features’ (genes or transcripts) names (e.g., DDX11L1)
or ids (e.g., ENSG00000223972.5) will be exported.

• Table layout. Choose whether the table should have cells in columns and features in rows,
or if it should be transposed such that features are in columns and cells are in rows.

• Separator. Choose the column separator.

• Use compression. Select among gzip, zip or no compression which is default.

• Output file name. Shows the name of the file. This can be customized by changing the
default pattern in Custom file name.

Note that the matrix exported will be dense and that it will also include values for unexpressed
cells and features. It may take up a lot of space compared to the other export formats which are
all sparse.

5.7 Export Peak Count Matrix
A peak count matrix can be exported to the following formats:

• Cell Ranger HDF5.

• MEX.

All options as shown in figure 5.9 are common to both exporters.

• Cell format. Can be specified to include both the sample and barcode. Hover the mouse
over this setting to see the possible options. Often the barcode in itself is sufficient as a
unique identifier of cells. However, when an expression matrix contains multiple samples,
the cell format must also include the sample, otherwise the export will fail.
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Figure 5.9: Options for export of peak count matrix.

• Peak annotations. If selected, the nearby genes will be exported to a separate file named
peak_annotations.tsv.

• Peak-motif associations. If selected, the transcription factors will be exported to a separate
file named peak_motif_mapping.bed.

The format of peak annotations and peak-motif annotations is as described in Import Peak
Count Matrix (see section 4.5). The peak annotations have 6 columns.

• Use compression. Select among gzip, zip or no compression which is default.

• Output file name. Shows the name of the file. This can be customized by changing the
default pattern in Custom file name.
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Chapter 6

Prepare Reads
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6.1 Annotate Single Cell Reads
Annotate Single Cell Reads can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Annotate Single Cell Reads ( )

The tool takes as input one or more Sequence Lists ( ) of reads which are processed using the
provided read structure (figure 6.1). For each input it outputs a list of ‘annotated reads’, which
can be used in:

• Single Cell RNA-Seq Analysis, see section 7.1

• Map Reads to Reference, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Map_Reads_Reference.html, to produce a read mapping for Single
Cell ATAC-Seq Analysis, see section 12.1)

• Single Cell V(D)J-Seq Analysis, see section 13.1

• Create Cell Annotations from Hashtags, see section 15.3

Annotate Single Cell Reads optionally produces a list of reads that did not match the configured
read structure, and a report.

Default read structures are available for selected 10x Genomics protocols, BD Rhapsody, and
QIAseq UPX 3’ protocols.

The sample name used for the output can be set using the ‘Sample name’ option, see sec-
tion 6.1.1 for details.
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Figure 6.1: Defining the read structure for a 10x 3’ gene expression protocol.

Custom read structures

To supply a custom read structure, select Custom from the Library preparation dropdown. This
enables editing of the two panels beneath the dropdown.

The top panel should be configured to describe R1 of a pair, or single-end reads. The bottom
panel describes R2. For single-end reads, the configuration in the bottom panel is ignored.

The read structure can be composed of five different types of tags:

• Sequence

• Cell barcode

• UMI

• Hashtag

• Discarded

Only the Sequence part of the read will be retained in the ‘annotated reads’ list. The parts of the
reads corresponding to the other tags are removed from the output read. Cell barcode, UMI and
Hashtag are added as an invisible annotation on the read to be used by downstream tools.

An example read structure is shown in figure 6.1. Here R1 ends with a part of variable length
from 0 nt to 500 nt. This means that R1 is specified as being 16 nt of cell barcode + 12 nt
of UMI and then some unknown amount of sequence that is simply discarded. Read pairs with
an R1 shorter than 16+12=28 nt will not match the read structure, and will not be present in
the output. Similarly, read pairs with an R1 that is longer than 528 nt will not be present in the
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‘annotated reads’ output. Note that only R2 has a ‘Sequence’ part. This means that the output
will be single-end reads - consisting of R2 from the original pairs - but annotated invisibly with the
cell barcode and UMI that were present on R1.

When configuring the read structure, be sure to describe the full length of the read. Figure 6.2
shows a similar R1 configuration as in figure 6.1. However, because the variable length part is
missing, only read pairs with an R1 that is exactly 28 nt long will match the read structure: no
other read pairs will be present in the ‘annotated reads’ output.

Figure 6.2: A partially defined read structure. This will only match reads that are exactly 28 nt long,
which is unlikely to be the intended behavior. Adding a variable length part as in figure 6.1 will
allow matches to reads that are also longer than 28 nt.

Structures of many different libraries are listed at https://teichlab.github.io/scg_
lib_structs/. For example, at the time of writing, that resource describes Microwell-seq as
having an R1 structured as 6 nt cell barcode + 15 nt adapter + 6 nt cell barcode + 15 nt adapter
+ 6 nt cell barcode + 6 nt UMI + polyA, while R2 contains the biological insert. This would be
configured as shown in figure 6.3.

Figure 6.3: An example of a possible Microwell-seq R1 configuration. A single 18 nt cell barcode
will be constructed from the three shorter parts.

In the Microwell-seq example, the tool would construct a single 18 nt cell barcode from the
three shorter parts. More general constructions are possible. For example, if two UMI parts are
defined, one on R1 and one on R2, then a single UMI will be constructed from both parts.

Index reads Some library preparations result in UMIs or cell barcodes being present on
index reads. For example, in Smart-seq2, the cell barcodes are the sample index. As it
is not possible to specify an index read in Annotate Single Cell Reads, prior to analysis
the index reads must be prepended to the corresponding read upon import using the
‘Custom read structure’ option, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Illumina.html.

https://teichlab.github.io/scg_lib_structs/
https://teichlab.github.io/scg_lib_structs/
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Illumina.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Illumina.html
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Multiome ATAC

If read structure ‘10x Chromium Single Cell Multiome ATAC’ is selected then 10x Multiome ATAC
barcodes are translated to 10x Multiome GEX barcodes. This makes it possible to combine ATAC
and GEX reads for e.g. dimensionality reduction plots. The workflow Chromatin Accessibility and
Expression Analysis from Reads illustrates this (see section 19.3). Reads with barcodes that
cannot be translated are discarded.

It is not possible to customize the read structure whilst retaining the barcode translation.

6.1.1 Setting the sample name

The ‘annotated reads’ are annotated with the sample name (see section 6.1.2). When jointly
analyzing scATAC-Seq or scV(D)J-Seq with matched scRNA-Seq data, it is important that reads
originating from the same sample are annotated with the same sample name. This can be
configured using the ‘Sample name’ option.

When the tool is run from the Toolbox, the option supports the placeholder {nameOrBatchId},
which sets the sample name to the name of the input. When the tool is run as part of a workflow,
this option will set the sample name to the name of the input for simple workflows, and to the
name of the batch identifier for batching/iterating workflows.

Note that it can also be set to an explicit name, such as ‘Individual_1’, or to a complex pattern
such as ‘Individual_{nameOrBatchId}_1’.

Additional placeholders are available when the tool is run as part of a workflow (figure 6.4).

Figure 6.4: Options for configuring the ‘Sample name’ when Annotate Single Cell Reads is run in a
workflow.

6.1.2 Interpreting the output of Annotate Single Cell Reads

The primary outputs of Annotate Single Cell Reads are Sequence Lists ( ) of ‘annotated reads’.
These contain just the ‘Sequence’ part of the read structure and are suitable for use in several
tools as described in section 6.1. Note that the output reads are sorted by their cell barcode,
UMI and hashtag, if used, so they will appear shuffled compared to the input.

For each input, another sequence list of unmatched reads can be produced. This contains reads
that do not match the provided read structure. In most cases this list will contain reads that are
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too short according to the configured read structure. If longer reads are present it may be worth
checking that the read structure includes a variable length part.

The Annotate Single Cell Reads report

The report includes summary statistics, a barcode ranks plot, and plots of the distributions of
different nucleotides at each position in the cell barcode, UMI and hashtag, if present.

The summary statistics section shows the number of input and output reads together with the
number of distinct cell barcodes (figure 6.5). If hashtags are used, the number of distinct
hashtags is also shown in the summary.

Typically the number of distinct barcodes is large as it includes all barcodes, including those that
arise from sequencing error. The number of cells can be approximated by the location of a sharp
fall in the corresponding barcode ranks plot, which ranks the barcodes in decreasing order of the
number of reads (figure 6.6).

Figure 6.5: Summary statistics for data where R1 is discarded after the cell barcode and UMI have
been extracted. In this example, 193 767 838 reads are present in the input. After discarding R1,
193 767 838 / 2 = 96 883 919 reads are present in the output. There are 1 968 804 distinct cell
barcodes.

Figure 6.6: The barcode ranks plot for the data shown in figure 6.5. A sharp transition from an
average of >10000 reads to <100 reads per barcode is seen at x = 10000, suggesting that there
are approximately 10000 cells in the data.

The plots of the distributions of different nucleotides at each position of the cell barcode/U-
MI/hashtag are made using all the ‘annotated reads’.

The distributions for cell barcodes and UMI are both expected to be roughly uniform, as described
below. However, the distribution for hashtags depends on the number of distinct hashtags
present in the data. The more hashtags, the more uniform the distribution should be. On the
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other hand, if only a few hashtags are expected, for example when the hashtag represents the
sample, the distribution is more likely to be skewed and should reflect the known expected
hashtags.

For simplicity, the remainder of this section will talk about ‘barcodes’, but the description is
equally true for UMIs.

Typically, barcodes are randomly generated, or else designed to be very different from each other,
such that all nucelotides are observed at each barcode position, and in approximately equal
amounts. Errors may be detected when the barcode plots do not show this behavior, such as in
figure 6.7, where position 1 in the barcode is mostly ‘A’, position 2 is mostly ‘A’, position 3 is
mostly ‘G’ etc. It appears that one barcode contains almost all the reads in the sample. In this
case, the cell barcode part of the read structure has been misconfigured to read an adapter with
sequence ‘AAGCAGTGGT’. The same plot with the correct read structure is shown in figure 6.8.

Figure 6.7: Nucleotide distribution plot for a misconfigured barcode. One barcode with sequence
‘AAGCAGTGGT’ is present in most of the reads. In this case the barcode was misconfigured to be
part of an adapter.

Figure 6.8: Nucleotide distribution plot for the same data as in figure 6.7. All nucleotides are seen
at all positions of the barcode with comparable frequencies, except for at position 1. This dataset
is from a 96-well protocol where the barcodes for each well are known in advance. In this case, it
was possible to verify that the nucleotide distribution at position 1 should be skewed.
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7.1 Single Cell RNA-Seq Analysis
Single Cell RNA-Seq Analysis can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Cell Preparation ( ) |
Single Cell RNA-Seq Analysis ( )

The tool takes as input one or more Sequence Lists ( ) of reads that have been annotated using
Annotate Single Cell Reads. It outputs an Expression Matrix with spliced and unspliced counts
( ) for gene expressions, and optionally an Expression Matrix ( ) for transcript expressions, a
report, and unmapped reads.
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Sample: All input sequence lists must originate from the same sample, which is set when
executing the Annotate Single Cell Reads tool (see section 6.1). This is because Single
Cell RNA-Seq Analysis assumes that reads with the same cell barcode that are present
in different inputs represent the same cell. The wizard does not allow executing the tool
with inputs that are annotated with different samples.

It is important to provide all the data for a sample to Single Cell RNA-Seq Analysis at
the same time. For example, if one sample was sequenced on 4 lanes of an Illumina
sequencer, then all 4 lanes should be supplied together. This allows reads originating
from the same cell, but coming from different lanes, to be analyzed jointly such that
amplification duplicates are detected using UMIs and only give one count in the output
Expression Matrix.

Matrix with spliced and unspliced counts: The Expression Matrix with spliced and un-
spliced counts ( ) is an extension of the Expression Matrix ( ) containing separate
information about the spliced and unspliced reads for each cell and gene. Reads mapping
to transcripts are counted towards the spliced expression of a gene, while reads mapping
to a gene but not a transcript, such as introns of known transcripts, or upstream/-
downstream of known transcripts, are counted towards the unspliced expression. The
Expression Matrix with spliced and unspliced counts ( ) can be used as input to any tool
that accepts an Expression Matrix ( ).

Filtering: The output matrix should be filtered by QC for Single Cell before being used in
any other tool in the CLC Single Cell Analysis Module. This is because sequencing errors
often lead to many barcodes that have few counts, and which do not represent real cells.
If no filtering is performed, the large number of barcodes can cause downstream tools to
run extremely slowly and results can be negatively affected by the added noise.

Barcode whitelists: In some protocols, the set of valid barcodes is known in advance, and
available as a barcode whitelist. In CLC Single Cell Analysis Module, it is not possible to
directly use such a list. Instead, QC for Single Cell is usually able to detect the barcodes
that correspond to cells using the Empty droplets filter (see section 7.2.1), and to prevent
specific barcodes from being filtered away (see section 7.2.5).

The tool requires a genome - supplied as References, and both a Gene track and a corresponding
mRNA track. These data can obtained in two ways:

• Directly downloaded as tracks using the Reference Data Manager (see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_Genomes.

html).

• Imported as tracks from fasta and gff/gff3/gtf files (see http://resources.qiagenbioinformatics.

com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_tracks.html).

The following additional options are available:

• Use spike-in controls. Includes spike-in controls in the output, which can be used
downstream in the QC for Single Cell tool. A spike-in section is also added to the report
produced by this tool.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_Genomes.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_Genomes.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Download_Genomes.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_tracks.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_tracks.html
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• Spike-in controls The spike-in controls. To learn how to import spike-in control files, see
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=

Import_RNA_spike_in_controls.html.

• Strand setting. This option controls whether the reads should be mapped in the same
orientation as the transcript from which they originate (forward), in the reverse direction
(reverse), or to both directions (both). The ‘forward’ and ‘reverse’ options allow assignment
of reads to the correct gene in cases where overlapping genes are located on different
strands. Without the strand-specific protocol, this would not be possible (see [Parkhomchuk
et al., 2009]). For many single cell library preparations, one read of a pair, which is usually
discarded, binds to the polyA tail of transcripts. This means that the remaining read should
usually be mapped with strand specific ‘forward’.

• Coverage bias. The expected coverage bias determines whether it is possible to produce
an Expression Matrix for transcript expressions, and also affects the quality control applied
to the ‘Gene/transcript length coverage’ section of the report.

– Unbiased. An Expression Matrix for transcript expressions can be produced. The
expected coverage is uniform across the bodies of transcripts.

– Targeted. An Expression Matrix for transcript expressions cannot be produced. This is
because several transcripts may be amplified by the same primers, meaning it is often
not possible to determine the transcript of origin for a read. The expected coverage
has no particular bias.

– 3’ bias. An Expression Matrix for transcript expressions cannot be produced. This
is because several transcripts may end at the same genomic position, meaning it
is often not possible to determine the transcript of origin for a read. The expected
coverage is 3’ biased.

• Include intronic reads in total expression By default, the total expression of a gene is given
by the spliced expression. When this option is enabled, the total expression is set instead
to the sum of spliced and unspliced counts. This option is recommended for single nucleus
RNA sequencing (snRNA-Seq), where data is usually analyzed by counting expression from
both exons and introns [Bakken et al., 2018].

• Group by UMIs. When enabled, reads with the same cell barcode and UMI are counted as
1 such that the output expressions have no amplification bias. When disabled, reads with
the same cell barcode and UMI are counted separately.

• Output report. When enabled, a detailed report is produced, see section 7.1.1.

• Output transcript matrix. When enabled, an Expression Matrix for transcript expressions
is produced.

• Output unmapped reads. When enabled, up to two lists with reads that did not map are
produced, one for paired reads and one for single reads. The unmapped reads consist of
those reads that did not map to the reference at all, or that mapped equally well to more
than 10 distinct places in the reference sequence.

For paired reads, pairs that mapped to different genes are output in the unmapped paired
reads list, while members of broken pairs are output in the unmapped single reads list.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_RNA_spike_in_controls.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_RNA_spike_in_controls.html
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7.1.1 The Single Cell RNA-Seq Analysis report

An example of an scRNA-Seq report is shown in figure 7.1.

Figure 7.1: Report of an RNA-Seq run.

The report is a collection of the sections described below, some sections included only based on
the input provided when starting the tool. If a section is flagged with a pink highlight, it means
that something has almost certainly gone wrong in the sample preparation or analysis. A warning
message tailored to the highlighted section is added to the report to help troubleshoot the issue.
The report can be exported in PDF or Excel format.

Selected input sequences

Information about the sequence reads provided as input, including the number of reads in each
sample, as well as information about the reference sequences used and their lengths.

References

Information about the total number of genes and transcripts found in the reference:

• Transcripts per gene. A graph showing the number of transcripts per gene.

• Exons per transcript. A graph showing the number of exons per transcript.

• Length of transcripts. A graph showing the distribution of transcript lengths.

Spike-in quality control

• Spike-in plot. A plot shows the expression of each spike-in as a function of the known
concentration of that spike-in (see figure 7.2 to see an optimal spike-in plot).
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Figure 7.2: Spike-in plot showing how the points fall close to the regression line at high concentra-
tion.

• Summary table. A table provides more details on the spike-in detection. Figure 7.3 shows
a failed spike-in control, with a table where results that require attention are highlighted in
pink.

Figure 7.3: Summary table where less than optimal results are highlighted.

Under the table, a warning message explains what the optimal value was, and offers some
troubleshooting measures: When samples have poor correlation (R2 < 0.8) between known
and measured spike-in concentrations, it indicates problems with the spike-in protocol, or a
more serious problem with the sample. To troubleshoot, check that the correct spike-in file
has been selected, and control the integrity of the sample RNA. Also, if fewer than 10000
reads mapped to spike-ins, check that the correct spike-in sequences are specified, and
consider using more spike-in mix in future experiments.
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Read quality control

This section includes:

• A strand specificity table that indicates the direction of the RNA fragment that generated the
read. Strandedness can only be defined for reads that map to a gene or transcript. Of these
reads, the number of "Reads with known strand" is used in determining the percentage of
reads ignored due to being on the wrong strand, and the subsequent percentage of reads
with the wrong strand. In a strand-specific protocol, almost all reads are generated from a
specific orientation, but otherwise a mix of both orientations is expected.

– A warning message will appear if over 90% of reads were mapped in the same orienta-
tion but the tool was run without using a strand specific setting ("Forward"/"Reverse").

– If over 25% of the reads were filtered away due to the strand specific setting, try
to re-run the tool with strand specific setting "Both". However, if a strand-specific
protocol was used, library preparation may have failed.

• A percentage of mapped paired-end reads containing read-through adapters. If present
in above 10% of the reads, adapters may lead to false positive variant calls or incorrect
transcript quantification (because reads must align within transcript annotations to be
counted towards expression). Read-through adapters can be removed using the Trim Reads
tool. In future experiments, consider selecting fragments that are longer than the read
size. Note that single base extensions such as TA overhangs will also be classed as
read-through adapters, and in these cases the additional base should be trimmed. Note
also that trimming of read starts (5’ trim) can lead to spurious detection of read-through
adapters, because the trimming increases the number of read pairs where the end of one
read aligns over the (trimmed) start of the other.

• A paired distance graph (only included if paired reads are used) shows the distribution of
paired-end distances, which is equivalent to the distribution of sequenced RNA fragment
sizes. There should be a single broad peak at the target fragment size. An asymmetric
peak may indicate problems in size selection.

Mapping statistics

Shows statistics on:

• Paired reads or Single reads. The table included depends on the reads used. The table
shows the number of reads mapped or unmapped, and in the case of paired reads, how
many reads mapped in pairs and in broken pairs.

If over 50% of the reads did not map, and the correct reference genome was selected,
this indicates a serious problem with the sample. To troubleshoot, the report offers the
following options:

– Check that the correct reference genome and any relevant gene/mRNA tracks have
been provided.

– The mapping parameters may be too strict. Try resetting them to the default values.

– Try mapping the unmapped reads against possible contaminants. If the sample
is contaminated, enrich for the target species before library preparation in future
experiments.
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– Library preparation may have failed. Check the quality of the sample RNA.

In case paired reads are used and over 40% of them mapped as broken pairs, the report
hints that there could be problems with the tool settings, a low quality reference sequence,
or incomplete gene/mRNA annotations. It could also indicate a more serious problem with
the sample. To troubleshoot, it is suggested to:

– Check that the correct reference genome and any relevant gene/mRNA tracks have
been provided.

– Try re-running the tool with the "Auto-detect paired distances" option selected.

– Check that the paired-end distances on the reads are set correctly. These are shown
in the "Element Information" view on the reads. If these are correct, try re-running the
tool without the "Auto-detect paired distances" option.

– Try mapping the reads against possible contaminants. If the sample is contaminated,
enrich for the target species before library preparation in future experiments.

• Match specificity. Shows a graph of the number of match positions for the reads. Most
reads will be mapped 0 or 1 time, but there will also be reads matching more than once in
the reference.

Fragment statistics

• Fragment counting. Lists the total number of fragments used for calculating expression,
divided into uniquely and non-specifically mapped reads, as well as uncounted fragments
(see the point below on match specificity for details).

• UMI fragment counting. Lists the total number of distinct UMI fragments used for
calculating expression. This table is only included if the Library type setting is 3’ sequencing
and if the input reads are single end reads annotated with UMIs by tools of the Biomedical
Genomics Analysis plugin.

• Counted fragments by type. Divides the fragments that are counted into different
types, e.g., uniquely mapped, non-specifically mapped, mapped. A last column gives the
percentage of fragments mapped for a particular type.

– Total gene reads. All reads that map to the gene.

– - Intron. From the total gene reads, reads that fall partly or entirely within an intron.

– - Exon. From the total gene reads, reads that fall entirely within an exon or in an
exon-exon junction.

– - - Exon. From the total gene - exon reads, reads that map completely within an exon

– - - Exon-exon. From the total gene - exon reads, reads that map across an exon
junction .

– Intergenic. All reads that map partly or entirely between genes.

– Total. Total amount of reads for a particular type.
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• Counted UMI fragments by type. Divides the distinct UMI fragments that are counted
into different types, e.g., uniquely mapped, non-specifically mapped, mapped. The table
contains the same rows as the ’Counted fragments by type’ table (see above). It is only
included in the report if the Library type setting is 3’ sequencing and if the input reads are
single end reads annotated with UMIs by tools of the Biomedical Genomics Analysis plugin.

Distribution of biotypes

Table generated from biotype annotations present on the input gene or mRNA tracks. If using
both gene and mRNA tracks, the biotypes in the report are taken from the mRNA track.

• For genes, biotypes can be any of the following columns: "gene_biotype", "biotype",
"gbkey", "type". The first one in this list is chosen.

• For transcripts, biotypes can be any of the following columns: "transcript_biotype", "bio-
type", "gbkey", "type". The first one in this list is chosen.

The biotypes are "as a percentage of all transcripts" or "as a percentage of all genes". For a
poly-A enrichment experiment, it is expected that the majority of reads correspond to protein-
coding regions. For an rRNA depletion protocol, a variety of non-coding RNA regions may also be
observed. The percentage of reads mapping to rRNA should usually be <15%.

If over 15% of the reads mapped to rRNA, it could be that the poly-A enrichment/rRNA depletion
protocol failed. To troubleshoot the issues in future experiments, check for rRNA depletion prior
to library preparation. Also, if an rRNA depletion kit was used, check that the kit matches the
species being studied.

Gene/transcript length coverage

Plot showing the normalized coverage across a gene/transcript body for four different groupings
of gene/transcript length (figure 7.4).

To generate this plot, every transcript is rescaled to have a length of 100. For every read that is
assigned to a transcript, we get its start and end coordinates in this "transcript-length-normalized"
coordinate system [0,100]. We then increment counters from the read start position to the read
end position. After all the reads have been counted, the average 5’ count is the average
value of the counters at position 0,1,2...49. The average 3’ count is the value at positions
51,52,53...100. The difference between average 3’ and 5’ normalized counts is the difference
between these values as a percentage of the maximum number of counts seen at any position.

7.1.2 The Single Cell RNA-Seq Analysis algorithm

Single Cell RNA-Seq Analysis uses the same algorithm as the RNA-Seq Analysis tool of the CLC
Genomics Workbench. Briefly, the tool extracts the sequence of all transcripts from the provided
mRNA track. Reads are then simultaneously aligned to both this transcriptome and the full
genome (and spike-in sequences if these have been provided).

Each read may have multiple equally high scoring alignments, some to transcripts and others to
the genome. These alignments are translated back into genomic coordinates. In many cases,
all the alignments refer to the same genomic coordinates and the read is considered ‘uniquely
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Figure 7.4: Gene/transcript length coverage plot for data with a 3’ bias.

mapped’. If there are more than 10 distinct alignments in genomic coordinates, then the read is
discarded.

When a read can be aligned equally well to multiple transcripts or multiple genes, it is counted
towards only one of these, with the ‘lucky’ transcript being chosen by an Expectation Maximization
(EM) method similar to RSEM and eXpress. This works as follows:

• An ‘ambiguity graph’ is built that links transcripts that could have given rise to the same
reads. At this stage all reads are considered together without reference to their barcodes
or UMIs.

• The abundance of each transcript is estimated from this graph.

• The reads are distributed to the different transcripts according to their estimated abun-
dances. Reads that map to genes, but are incompatible with known transcripts are ignored
unless the option Count intronic reads is enabled. When the option is enabled, these
reads are assigned to a gene based on the estimated abundances of the transcripts for
each gene.

At this stage, if the option Group by UMIs is enabled, then reads with the same barcode
and UMI are only counted once. After the first read has been assigned, subsequent reads
with the same barcode and UMI are ignored.

The final gene expression is the sum of the expressions of the transcripts for that gene. When
the option Count intronic reads is enabled, expression from introns and UTRs is also included.

7.2 QC for Single Cell
QC for Single Cell performs quality control and removes barcodes that are deemed to not contain
RNA from a single cell (for droplet-based protocols), or that are of low quality, based on different
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metrics. These barcodes can contribute to misleading results in the downstream analysis and
should therefore be removed as a first step after the Expression Matrix has been created.

The QC for Single Cell tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Cell Preparation ( ) |
QC for Single Cell ( )

The tool takes an Expression Matrix ( ) / ( ) as input.

7.2.1 Empty droplets filter

In droplet-based data, barcodes can correspond to droplets containing one cell, more cells or no
cells at all. In the first dialog of QC for Single Cell, the Empty droplets filter can be enabled and
customized to remove the droplets that are detected to not contain any cells. This filter should
be skipped for single-cell protocols that are not droplet-based.

Note that each droplet is assigned one barcode and these terms can be used interchangeably
for droplet-based protocols.

Non-zero counts in empty droplets are obtained from ambient (i.e., extracellular) RNA, that can
be captured and sequenced during the protocol. Sequenced empty droplets contain significantly
fewer reads, and this can be seen as a sharp transition in the rank plot, shown in figure 7.9.

Droplets can be classified in three categories (see figure 7.9):

• Ambient: removed droplets that have a low number of reads which are assumed to only
contain ambient RNA.

• Cells: retained droplets that have a high number of reads.

• The remaining droplets with an intermediate number of reads can either be cells with low
RNA content or empty droplets, and this cannot be determined purely based on the number
of reads.

Droplets with a low number of reads are removed as ambient droplets. The threshold for this
is usually obtained automatically from the histogram of number of reads, see section 7.2.6 for
details.

Droplets with a high number of reads are automatically retained as cell-containing droplets. The
threshold for this is usually obtained from the automatically inferred knee from the rank plot, see
figure 7.9 and section 7.2.6 for details.

To detect cells with low RNA content, first an ambient RNA profile is estimated from the ambient
droplets. The remaining droplets with an intermediate number of reads can be tested against
this profile and are assigned simulation-based FDR-corrected p-values, from which non-empty
droplets are identified.

The following options can be adjusted in the Empty droplets filter dialog (figure 7.5):

• Identify and remove empty droplets. Enables filtering of the empty droplets. This should
be disabled for single-cell protocols that are not droplet-based.
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Figure 7.5: The default settings in the Empty droplets filter dialog.

• Droplets with low number of reads. Droplets with a total number of reads below a
threshold are removed as ambient droplets. The threshold can be calculated automatically
(see section 7.2.6 for details) by choosing Calculate maximum number of reads for
droplets to be ambient, or can be specified manually in the Maximum parameter by
choosing Specify maximum.

• Droplets with high number of reads. Droplets with a total number of reads above
a threshold are retained as cell-containing droplets. The threshold can be calculated
automatically (see section 7.2.6 for details) by choosing Calculate minimum number of
reads for droplets to be cells, or can be specified manually in the Minimum parameter by
choosing Specify minimum.

• Identify cells from the remaining droplets. Enables the simulation-based detection of cells
with low RNA content.

• FDR threshold. Droplets with FDR-corrected p-values larger than this are removed as empty
droplets.

The generated rank plot and summary (see figures 7.9 and 7.10) can be used to identify when
the automatic thresholds are not suitable and manual thresholds are required.

After applying the Empty droplets filter, only droplets that are identified as non-empty are retained
for the remaining filters (see section 7.2.2). Note that this filter does not concern the quality of
the retained cells. The Empty droplets filter already removes cells with low number of reads,
or, by association, low number of expressed features, and enabling the Count-based filters is
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not strictly necessary. The Extra-chromosomal filters provide the most additional benefit in this
situation.

For removing droplets containing more than one cell, the Doublets filter can be used, see sec-
tion 7.2.3.

7.2.2 Count-based and extra-chromosomal filters

Low quality barcodes can arise for various reasons, such as damaged cells or library preparation
problems. Potential low quality barcodes can be identified by detecting outliers in the distributions
of the metrics listed below. An outlier is a barcode with a value for a given metric that is more
than three median absolute deviations (MADs) from the median value.

• Number of reads. Barcodes with few number of reads result from losing RNA during library
preparation.

• Number of expressed features. Barcodes with few expressed features indicate that the
diverse transcript population has not been successfully captured.

• Proportion of reads mapped to spike-in control regions. When spike-in controls are used,
barcodes with proportionally many reads mapped to the spike-in controls are symptomatic
of loss of endogenous RNA, as the same amount of spike-in RNA should have been added
to each cell.

• Proportion of reads mapped to features indicative of low quality. Barcodes with proportionally
many reads mapped to certain features are indicative of low quality cells. For example,
loss of cytoplasmic RNA from perforated cells can lead to high expression of mitochondrial
genes in eukaryotes [Islam et al., 2014, Ilicic et al., 2016].

Count-based filters

In this dialog of QC for Single Cell, the filters using the total number of reads and expressed
features can be enabled and customized.

The dialog first allows for manually specifying a list of barcodes to be retained as cells in
Barcodes to retain (figure 7.6). These would typically be barcodes that are otherwise removed
by any of the filters applied. See more details in section 7.2.5.

The following options can be adjusted for the Count-based filters (figure 7.6):

• Remove cells with few reads. Enables filtering based on the total number of reads.

• Remove cells with few expressed features. Enables filtering based on the total number of
expressed features.

• For both filters, the outlier detection can be fine-tuned by selecting:

– Calculate minimum from data. Outliers are detected as being more than three MADs
below the median.

– Specify minimum. Outliers are detected as being below the threshold specified in the
Minimum parameter. This can be useful when the metric distribution is not normal.



CHAPTER 7. CREATING A GENE EXPRESSION MATRIX 79

Figure 7.6: The default settings in the Count-based filters dialog.

Extra-chromosomal filters

In this dialog of QC for Single Cell, the filters using the proportion of reads mapped to spike-in
controls and features indicative of low quality reads can be enabled and customized.

The following options can be adjusted in the Extra-chromosomal filters dialog (figure 7.7):

• Remove cells with many spike-in reads (%). Enables filtering based on the proportion of
reads mapped to spike-in controls.

• Chromosomes. The name of the mitochondria chromosome and/or other chromosomes
containing only features indicative of low quality cells. Can be left empty or multiple
chromosomes can be chosen.

• Feature tracks. Feature tracks containing only features indicative of low quality cells. Can
be left empty or multiple tracks can be chosen.

• Feature names. Names or ids features indicative of low quality cells. Any white-space
characters, and ",", and ";" are accepted as separators.

• Remove cells with many reads mapping to features indicative of low quality (%). Enables
filtering based on the proportion of reads mapped to features indicative of low quality, as
defined through Chromosomes, Feature track, and/or Feature names. It requires that at
least one of these options is set.

• For both filters, the outlier detection can be fine-tuned by selecting:

– Calculate maximum from data. Outliers are detected as being more than three MADs
above the median.
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Figure 7.7: The default settings in the Extra-chromosomal filters dialog.

– Specify maximum. Outliers are detected as being above the threshold specified in
the Maximum (%) parameter. This can be useful when the metric distribution is not
normal.

7.2.3 Doublets filter

In droplet-based data, barcodes can correspond to droplets containing two or more cells. In this
dialog of QC for Single Cell, the Doublets filter can be enabled and customized to remove the
droplets that are detected as containing two cells. This filter should be skipped for single-cell
protocols that are not droplet-based.

Note: The Doublets filter can only be used together with the Empty droplets filter.

Note that QC for Single Cell cannot remove droplets containing more than two cells. However,
these are expected to be present at negligible rates.

There are two types of doublets:

• homotypic doublets are formed by two cells with similar expression profiles;

• heterotypic doublets are formed by two cells with different expression profiles.

Doublet-removal software, which relies on gene expression to detect doublets, cannot identify
homotypic doublets, as their expression profiles are indistinguishable from those of other cells.
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Alternative approaches are required to detect homotypic doublets, such as cell hashing [Stoeckius
et al., 2018] and SNPs in multiplexed samples [Kang et al., 2018].

The Doublets filter simulates heterotypic doublets by averaging the expression of two random
barcodes that are sufficiently different from each other. These artifical doublets are then used
for predicting which of the input barcodes are doublets.

Figure 7.8: The default settings in the Doublets filter dialog.

The following options can be adjusted in the Doublets filter dialog (figure 7.8):

• Identify and remove droplets containing two cells. Enables filtering of the doublets. This
should be disabled for single-cell protocols that are not droplet-based.

• Dimensions. The number of PC dimensions to be used when reducing the dimensions of
the expression data.

• Neighborhood size (%). Simulated doublets are obtained from barcodes that are not in each
other’s neighborhood. The size of the neighborhood is specified as % of input barcodes.
Note that this is relative to the number of barcodes that pass all previous filters of QC for
Single Cell. The optimal neighborhood size is data-set specific and would typically depend
on the number of clusters in the data.

• Specify expected doublets. Enable this option to specify approximately how many doublets
are present in the data. This option should be used whenever a reasonable expectation is
known, as it is very important for an accurate detection of doublets.

• Expected doublets (%). The percentage of barcodes that are expected to be doublets,
relative to the number of captured cells. If ‘Specify expected doublets’ is disabled, this is
set to 1% per 1000 captured cells, which is roughly the doublet rate for 10x data.

• Correction margin (%). The percentage of predicted doublets will lie in the interval given
by ‘Expected doublets (%)’ ± ‘Correction margin (%)’. If ‘Specify expected doublets’ is
disabled, this is set to half of the value of ‘Expected doublets (%)’.
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Note: Expected doublets (%) is relative to the number of captured cells and not to the
number of high quality cells. This is estimated as the number of barcodes passing the
Empty droplets filter. The Doublets filter receives as input only the high quality cells that
also pass the Count-based filters and Extra-chromosomal filters.

For more details on how doublets are detected, see section 7.2.7.

7.2.4 Interpreting the output of QC for Single Cell

Because the distribution of the QC metrics can be sample-specific, QC for Single Cell runs
separately for each sample detected in the input Expression Matrix, producing the following
outputs:

• An Expression Matrix ( ) / ( ) containing only the barcodes that passed all filters.

• A Cell Annotations ( ) element containing the different QC metrics used by the filters
for the barcodes that passed all filters. Using this Cell Annotations, the barcodes can be
colored in a Dimensionality Reduction Plot plot (see chapter 16) using the QC metrics.

• A Report ( ), summarizing the filters applied and providing diagnostic plots for each type
of filter, as detailed below. The report contains information separately for each sample:
summary tables contain one row per sample (figure 7.11), while plots are added per
sample.

Empty droplets filter

Note that for droplet-based protocols, each droplet is assigned one barcode and these terms can
be used interchangeably.

If the Empty droplets filter was enabled, the report contains the following information.

The report first shows the barcode rank plot, as seen in figure 7.9.

A summary of the empty droplet filtering and the identified cells is then shown, see figure 7.10
and figure 7.11.

If any automatic threshold was used (see section 7.2.1), the barcode rank plot and summary
table can indicate if this was successful or not. If any of the thresholds are not appropriate, they
can be changed as detailed in section 7.2.1.

When Identify cells from the remaining droplets is enabled, the p-values are simulation-based.
The number of simulations to be performed is calculated automatically based on the FDR
threshold. The report shows the p-value distribution for the ambient droplets. This is expected to
be roughly uniformly distributed. Peaks close to 0 indicate that the assumption is invalid and the
value for considering barcodes as being empty droplets should be reduced (see section 7.2.1).
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Figure 7.9: Barcode rank plot: log-log plot of the total number of reads for each barcode vs the rank
of the barcode, in decreasing order of the number of reads. The barcodes are colored according
to whether they are empty droplets containing only ambient RNA (Ambient, black) or retained as
cells because they contain a high number of reads (Retained, green). When "Identify cells from
the remaining droplets" is enabled, remaining barcodes are shown in blue and are tested for being
empty droplets (top). Otherwise, these barcodes are shown in red and are removed as empty
droplets (bottom).
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Figure 7.10: Table summarizing the performed empty droplets filter and identified cells. "Droplets
with significant FDR p-value" is reported only when "Identify cells from the remaining droplets" is
enabled.

Figure 7.11: Table summarizing the performed empty droplets filter and identified cells, for input
matrix containing two samples.
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Figure 7.12: Histogram of the p-values calculated for the barcodes from which the ambient RNA
profile is built.
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Count-based and extra-chromosomal filters

If the Empty droplets filter was not enabled, the report first shows the barcode rank plot, as
seen in figure 7.13.

Figure 7.13: Barcode rank plot: log-log plot of the total number of reads for each barcode vs
the rank of the barcode, in decreasing order of the number of reads. The barcodes are colored
according to whether they are removed (red) or retained (blue), as determined by the number of
reads filter.

The report then lists a summary regarding the performed Count-based filters and Extra-
chromosomal filters, as shown in figure 7.14.

Figure 7.14: Table summarizing the performed count-based and extra-chromosomal filters.

Following are histograms of all QC metrics, regardless of whether they have been used for filtering
or not. If filtering was enabled, the histograms indicate the threshold used, see figure 7.15. When
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this threshold is calculated automatically based on the MAD (see section 7.2.2), the histograms
can indicate if the threshold is appropriate or not.

Figure 7.15: Histogram of the number of expressed features for all barcodes.

If the features indicative of low quality filter is enabled, barcodes with too many reads mapped
to these features are removed. However, high quality cells can be highly metabolically active,
leading to the incorrect removal of barcodes. The report shows relations between the number of
reads mapped to features indicative of low quality and the other QC metrics, to help identify such
barcodes. Using the MAD approach (see section 7.2.2), the report attempts to automatically
highlight such barcodes, but it is conservative in doing so. This can be seen in figure 7.16, where
only two barcodes with a relatively high number of expressed features are highlighted, due to the
shape of the underlying distribution shown in figure 7.15. See section 7.2.5 on how to specify
barcodes that should not be removed.
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Figure 7.16: The number of reads mapped to features indicative of low quality vs the total number
of reads (top) and expressed features (bottom). Barcodes in red have been removed and those
in blue have been retained. The thresholds for removing barcodes are shown as horizontal and
vertical red lines. Barcodes highlighted in orange have been removed, but might correspond to high
quality cells that are highly metabolically active that should be retained.

Doublets filter

If the Doublets filter was enabled, the report contains the following information.

The report first lists a summary regarding the performed filter and the identified cells, as shown
in figure 7.17.

Following is a histogram showing the doublet scores (see figure 7.18), which can indicate if
doublet filtering was successful.

The report also shows relations between the doublet score and number of reads and expressed
features (see figure 7.19). Typically, barcodes with a high number of reads and/or expressed
features are more likely do be removed as doublets.

These diagnostic plots can serve as a guide in adjusting the options for the doublet filter.
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Figure 7.17: Table summarizing the performed doublets filter and identified cells.

Figure 7.18: Histogram of the doublet score for all barcodes and simulated artificial doublets. The
histogram is in dodge format: the width of one bin is given by the sum of the widths of the three
types of shown data. The threshold for removing barcodes is shown as a vertical red line.
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Figure 7.19: The doublet score vs the total number of reads (top) and expressed features (bottom).
Barcodes in red have been removed and those in blue have been retained. The threshold for
removing barcodes is shown as vertical red lines.
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7.2.5 Choosing barcodes to retain

In the dialog for Count-based filters, a list of barcodes to be retained as cells can be specified.
The desired barcodes can be obtained from the plots in the report.

As shown in figure 7.16, barcodes with a high number of reads / expressed features can be
removed due to the fraction of reads that mapped to features indicative of low quality. These
barcodes can be recovered by double-clicking on the desired plot, changing to the table view
of the plot and applying a relevant filter such that only the barcodes of interest are listed in
the table (figure 7.20). The list of barcodes can be written in the Barcodes to retain field
(see section 7.2.2). Note that the barcodes need to be separated by semicolon and after copying
the barcodes from the table view, the text requires editing to add the semicolon separator.

Figure 7.20: Table view of the "Expressed features vs features indicative of low quality" plot from
figure 7.16. The table is filtered to only show barcodes that have been removed and have at least
2,000 expressed features.

When the QC for Single Cell is run with retaining these barcodes, it will produce a report that
highlights the retained barcodes as known cells, as shown in figure 7.21.

Note that this option also affects the Doublets filter. All barcodes to be retained as cells will be
retained regardless of their doublet score. Such barcodes are highlighted in the doublet score
relations plots.
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Figure 7.21: The number of reads mapped to features indicative of low quality vs the total number
of reads (top) and expressed features (bottom). Barcodes in red have been removed and those
in blue have been retained. The thresholds for removing barcodes are shown as horizontal and
vertical red lines. Barcodes highlighted in green have been retained as specified known cells.

7.2.6 The cell calling algorithm

Barcodes with a low number of reads are always removed as ambient droplets. If Calculate
maximum number of reads for droplets to be ambient is selected (see section 7.2.1), an
automatically estimated threshold is used for detecting such barcodes. The threshold is set to
100, or identified from the histogram of number of reads for those droplets that have at most
500 reads, using the Otsu method [Otsu, 1979], whichever is largest. When the threshold is
calculated automatically, the following need to be met:

• The minimum number of reads across all droplets is at most 100.

• At least 10% of all droplets have at most 500 reads.

• At least 100 barcodes are identified as ambient droplets.

If any of the above checks are not met, the threshold is set such that no barcodes is an ambient
droplet and hence cell calling is not performed.

Barcodes with a high number of reads are always retained as cell-containing droplets. If
Calculate minimum number of reads for droplets to be cells is selected (see section 7.2.1),
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the automatically estimated knee is used for detecting such barcodes. The knee is identified
from the smoothed log-log rank data (figure 7.9) where the the ambient droplets are removed.
An adaptation of the Satopaa et al., 2011 algorithm implemented in https://github.com/
mariolpantunes/ml is used.

The algorithm for testing if barcodes with an intermediate number of reads are cells is based on
EmptyDrops [Lun et al., 2019]:

• The ambient RNA profile is estimated from the ambient droplets. The expressions from
these droplets are added together and a proportion vector for the ambient profile is obtained
using the Good Turing algorithm [Gale and Sampson, 1995].

• Barcodes with an intermediate number of reads are tested for significant deviations from
the ambient profile. For each barcode, the probability of obtaining its expression profile
from the ambient is calculated. A p-value is obtained from the probabilities of ambient
simulated barcodes containing the same total number of reads.

• FDR correction is applied to the p-values for barcodes that are not part of the ambient
profile.

• Barcodes with FDR-corrected p-values below the provided value in FDR threshold (see sec-
tion 7.2.1) are retained as non-empty droplets.

7.2.7 The doublet calling algorithm

The algorithm for doublet calling contains the following steps.

Doublet simulation

The input expression data is first normalized by using log(1 + scaled expression). Scaling is
performed such that the total expression per barcode is 10000. This normalization procedure
is very simple, but sufficient for doublet calling. Note that it is different than the normalization
described in section 7.3.

The dimension of the data is then reduced by projecting it into PC space. See section 14.1 for
more details. Note that feature selection is not used here.

Heterotypic doublets are afterwards simulated: one doublet is obtained by averaging the
expression of two random barcodes that are sufficiently different from each other. For this, a
k-nearest neighbor graph is calculated and two barcodes are considered sufficiently different if
they are not found within each other’s neighborhoods. The value of k is set from ‘Neighborhood
size (%)’. Note that simulation might fail if this is set too high.

Simulated doublets are normalized and projected into the PC space.

Doublet features calculation

A k-nearest neighbor graph is calculated for all input barcodes and simulated doublets using
a pre-defined set of values for k. For each input barcode and simulated doublet, the following
doublet features are calculated:

• Is the nearest neighbor a simulated doublet?

https://github.com/mariolpantunes/ml
https://github.com/mariolpantunes/ml
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• Distance to the nearest neighbor.

• Ratio between the distance to the nearest simulated doublet and nearest input barcode.

• For each value of k, the percentage of neighbors that are simulated doublets.

• For each value of k, the sum of the distances to the neighbors that are simulated doublets,
divided by the sum of the distance to all neighbors.

Doublet classification

A Support Vector Machine (SVM) binary classifier is trained using the doublet features from
above. Training is performed iteratively:

• In the first iteration, all input barcodes are used in the training data as singlets.

• In the subsequent iterations, a number of input barcodes that are most likely to be doublets
are removed from the training data. This number is determined by the ‘Expected doublets
(%)’ option.

• Each model’s performance is evaluated by the number of incorrect predictions it makes.
There are three kinds of incorrect predictions:

– how many simulated doublets are predicted as singlets;

– how many input barcodes used in the training data are predicted as doublets (as these
were assumed to be singlets);

– how many input barcodes not used in the training data are predicted as singlets (as
these were assumed to be doublets).

• Training ends when the input barcodes most likely to be doublets do not change or the
performance of the model does not improve after a number of iterations.

Doublets are predicted using the model with the best performance. The SVM produces a doublet
score where a positive value indicates a doublet. A doublet score threshold is calculated such
that the number of input barcodes with a doublet score above this threshold falls in the interval
given by ‘Expected doublets (%)’ ± ‘Correction margin (%)’ and the threshold is as close to 0 as
possible. All input barcodes with a doublet score above this threshold are removed as doublets.

7.3 Normalize Single Cell Data
The Normalize Single Cell Data tool transforms count data so as to remove the effect of
sequencing depth and, optionally, the effect of batch factors. It is recommended to use this tool
prior to downstream analysis.

Normalize Single Cell Data can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Cell Preparation ( ) |
Normalize Single Cell Data ( )

The tool takes at least one Expression Matrix ( ) / ( ) as input, and produces a single
Expression Matrix ( ) / ( ) as output. If multiple Expression Matrixes are provided as input,
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the single Expression Matrix output will be filtered to only contain those genes that are present
in all of the inputs. A report can optionally also be output.

There are three ways of using the Normalize Single Cell Data tool, which differ in how batch
correction is performed:

• None. Batch correction is not applied, but count data is transformed so as to remove the
effect of sequencing depth. For a new dataset, it is often sensible to first try this setting,
and then only apply a batch correction if a batch effect is evident in the Dimensionality
Reduction Plot. For more details see section 7.3.1.

• Each sample is a batch. Batch correction is performed by choosing one sample as the
‘baseline’. Transformations for each additional sample are applied to make them resemble
the baseline. This is appropriate when each sample is expected to have systematic
changes in gene expression compared with all other samples, and when these changes
are uninteresting for downstream analysis. For example, this setting may be appropriate
for combining samples of the same tissue created by different investigators.

• Using metadata. A flexible batch correction is applied, where each batch can consist of
several inputs (Sample level metadata), or where batches can be specified at the level of
individual cells (Cell level metadata).

Sample level metadata can be supplied as a Metadata table. For details on how to create a
Metadata Table, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Metadata.html.To use sample level metadata, multiple inputs must
be provided, because each batch will consist of at least one input.

Batch factors can be supplied in the Correct for field. These correspond to columns of
a Metadata table. The use of more than one batch factor is not advised as it is easy to
over-parameterize the model, see section 7.3.2.

It is also possible to supply Do not correct for factors. When these are present, the tool
will warn if correcting for the specified batch effect would remove all variation due to these
factors in at least one sample (because they are confounded). It will also explicitly model the
effect of these factors on expression, which helps to prevent variation due to these factors
from being removed by the batch effect correction. This should be regarded as ‘advanced’
functionality because it is easy to over-parameterize the model, see section 7.3.2.

A typical use case for sample level metadata might be when combining samples of the
same tissue prepared by different investigators, but where each investigator might have
prepared multiple samples. Here it would make sense to ‘Correct for = investigator’. If
each investigator prepared a mixture of treated and control samples, then it would make
sense to ‘Correct for = investigator’ and ‘Do not correct for = Treatment/Control’.

Cell level metadata Batch factors can also be specified from categories in Cell Clusters
and Cell Annotations. Numerical categories of Cell Annotations are not supported, so it is
not possible to, for example, regress out ‘Mitochondrial counts (%)’, but this practice is
also not advised [Germain et al., 2020]. Multiple inputs of each type are supported, so it
is not necessary to ‘combine’ Cell Clusters and Cell Annotations before the tool is run.

It is easiest to explain the batch correction process with an example. If correcting for a cell
cycle annotation, possible values might be "G2/M, G1, S". Cells without an annotated cell
cycle state, or with an annotation that is rare (shared by < 20 cells) are given an additional
value "Unknown". One of these four cell cycle states (G2/M, G1, S1, Unknown) is then

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Metadata.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Metadata.html
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chosen as the baseline, and transformations for each additional value are applied to make
the other cell cycle states resemble the baseline.

7.3.1 When is batch correction appropriate?

If in doubt, apply batch correction only when normalization alone proves unsuitable. The suitability
of normalization can often be evaluated by looking at how well cells from different samples are
mixed within clusters in a Dimensionality Reduction Plot. Two examples follow:

Example 1: figure 7.22 shows clusters colored by sample, where each sample consists of a
single cell type. After batch correction using "Each sample is a batch", the cell types are mixed.
This is obviously undesired, so batch correction is inappropriate in this case - any effect of batch
on expression is confounded with the effect of cell type on expression, and it is not possible to
remove one without also removing the other.

Figure 7.22: An example of when batch correction is undesirable. Each color corresponds to a
sample of one cell type. Batch correcting the different samples also removes differences due to
cell type, leading to a single cluster.

Example 2: figure 7.23 shows clusters colored by sample. After batch correction using "Each
sample is a batch", the clusters are mixed. If the samples described the same tissue type
and experimental treatment then we would suspect a batch effect was present, and that batch
correction is appropriate. If instead the samples described a difference in experimental treatment,
then it would not be possible to determine whether the clusters were separated due to the effect
of the treatment, or due to a batch, and deciding whether to apply batch correction would be
more difficult.

7.3.2 Interpreting the output of Normalize Single Cell Data

Normalize Single Cell Data produces the following outputs:

• A single Expression Matrix ( ) / ( ) named with the extension ‘(residuals)’.

• A single Report ( ) providing diagnostic plots.
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Figure 7.23: An example of when batch correction may be desired. Several clusters can be
seen for each of two samples. After batch correction clusters contain a mixture of both samples.
Data is from a Seurat tutorial data set (https://satijalab.org/seurat/archive/v3.2/
immune_alignment.html).

The Expression Matrix output

It is not possible to see the normalized expressions in the output Expression Matrix - instead
the transformation is stored ‘invisibly’, and the output file is typically not much larger (on disk)
than the inputs. Tools whose results benefit from normalized data will automatically use the
transformation when available. Normalize Single Cell Data ignores any transformations already
stored on its inputs, so it is safe to, for example, run the tool on a mixture of samples, some of
which have already been normalized, and others of which have not.

The report

Because normalization involves fitting a model to data, bad results can be obtained when the
model is inappropriate. This can be diagnosed by the residual variance plot in the report. The
variance of the Pearson Residuals is expected to be ∼ 1 after normalization for the majority of
genes (because the majority are expected to have relatively stable expression across all cells in
the data).

There are several ways in which the model can be inappropriate:

The distribution of counts is not negative binomial Usually this is not a problem, as the negative
binomial (NB) model is quite flexible. However, the NB model is most appropriate for UMI
data. Figure 7.24 shows a dataset where there are no UMIs, and where the sequencing
is very deep. Normalization may still be beneficial in this case, but it is worth checking
whether the plot is indicating problems with the data.

The normalization is over-parameterized Each batch adds a term in the model that must be
estimated from the data. The fewer cells for that batch, the more inaccurate that
estimation will be.

The model is under-parameterized Figure 7.25 shows the variance of Pearson Residuals after
normalizing a mixture of several protocols (primarily 10X v2, 10X v3, Drop-Seq, Seq-Well
and inDrop), but without fitting batch terms. Figure 7.26 shows the variance of Pearson

https://satijalab.org/seurat/archive/v3.2/immune_alignment.html
https://satijalab.org/seurat/archive/v3.2/immune_alignment.html
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Residuals for the same data after batch correction. The batch corrected data are more
tightly clustered around the expected line.

Figure 7.24: Residual variance plot for a dataset that is not well modeled by the negative binomial
distribution

Figure 7.25: Residual variance plot for an under-parameterized model

In addition to the residual variance plot, the report contains a list of the most highly variable
genes found in the data after correcting for sequencing depth and batch effects. This list should
typically be enriched for marker genes of the cell types present in the data. It is sometimes
possible to spot problems here. For example, if multiple samples were supplied as input to the
tool, and the list was enriched for rRNA genes, then maybe some of the samples had a higher
amount of rRNA. Further investigation might then reveal that the samples were prepared by two
different individuals, and this might be added as a batch factor.

The remaining sections of the report plot the fitted values of each term in the model (blue points),
and, when relevant, ‘regularized’ values (red lines, see section 7.3.3 for details). These allow the
number of terms in the model to be seen, which can be useful when evaluating if the model is
likely to be over-parameterized. Three terms are always present - the ‘intercept’, the sequencing
depth term ‘log10_expression’ and the dispersion term ‘Log10(theta)’. By double-clicking on
each plot and switching to the table view, it is also possible to extract all the fitted values.
Examples of such plots are shown in figure 7.27 and figure 7.28.
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Figure 7.26: Residual variance plot for the same data as in figure 7.25 after adding batch correction
terms to the model

Figure 7.27: A plot of the fitted dispersion parameter, θ, of a model. Each blue point is a gene.
The red line is a ‘regularized’ trendline. When the average gene expression is low, the expression
of some genes is consistent with a Poisson distribution, which is seen here by the band of genes at
θ = 103. The trendline provides a more robust estimate of the dispersion, with θ actually decreasing
at low expression. See section 7.3.3 for more details.

7.3.3 The Normalize Single Cell Data algorithm

The algorithm is based on sctransform [Hafemeister and Satija, 2019]. Briefly, a negative
binomial (NB) generalized linear model (GLM) is fit to 2000 genes, uniformly sampled across a
range of expressions. The form of the model for each gene is:

logE(yi) = β0 + β1 log10mi ,

where yi are the observed counts for the gene for a cell i that has mi total counts. The dispersion
parameter γ = 1/θ of the NB distribution is estimated during fitting using the Cox-Reid penalized
adjusted likelihood [Robinson et al., 2010]. When γ = 0 (θ = ∞) the NB distribution reduces to
the Poisson distribution.

LOWESS regression is then used to estimate the intercept β0, the log-sequencing-depth coefficient
β1, and the dispersion as a function of the average expression. The regression serves as a form
of regularization that avoids over-fitting the model, which happens especially for low expression
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Figure 7.28: A plot of a batch effect parameter. In this example, the y-axis shows the natural
logarithm of the fold change for each gene (blue point) in the ‘CL’ sample as compared to the
baseline ‘SM2’ sample. There is no ‘regularized’ trendline. The large fold changes concentrated in
two bands at y = 20 and y = −20 are due to genes that are expressed in only one sample, or in
neither.

genes.

For batch correction there are some differences from both the above and from sctransform:

• A GLM is fit to every gene, because any gene might have a batch effect - though genes with
expression < 5 counts are ignored.

• Batch effect terms are added to the model, and these cannot be regularized because each
gene might have a batch effect very different from those of genes with similar expression.

• LOWESS regression is only applied to the dispersion, because otherwise there is a mix
of regularized and non-regularized terms that cannot be disentangled. The end result is,
roughly speaking, that the price to pay for batch correction is a tendency to over-correct
data. However, the more data there is, the less this will be a problem, and batch correction
is typically performed on large amounts of data.

Normalized/batch corrected values are Pearson Residuals. For each gene, these are defined as
follows:

zi =
yi − exp (β0 + β1 log10mi)

σ

=
yi − ŷi
σ

=
yi − ŷi√
ŷi(1 + γŷi)

Note that Pearson Residuals have several properties that may be unexpected. They are:

• decimals e.g. 123.4 rather than integers e.g. 123
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• negative when a gene in a cell has lower expression than predicted by the underlying GLM
(though usually not very negative)

• zero for all cells in the unlikely event that expression can be perfectly predicted by the GLM
from the provided combination of sequencing depth and batch factors

• only defined in the context of a data set - they cannot be compared across data sets. For
example if we have three data sets A, B and C, then running the tool on (A + B) might say
that a particular cell + gene in set A has a normalized expression of 100, while running the
same tool on (A + C) might say that the same cell + gene has a normalized expression of 0.
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8.1 Browse QIAGEN Cell Ontology
CLC Single Cell Analysis Module has a built-in QIAGEN Cell Ontology of cell types curated by
QIAGEN, associated with

• tissue information;

• synonyms;

• OmicSoft controlled vocabulary term, http://www.arrayserver.com/wiki/index.php?title=OmicSoft_
Land_Metadata_Definitions;

• CL Cell Ontology term, http://www.obofoundry.org/ontology/cl.html;

• parent cell type.

The QIAGEN Cell Ontology can be browsed by using the Browse QIAGEN Cell Ontology tool found
in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Cell Type Classification
( ) | Browse QIAGEN Cell Ontology ( )
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The tool launches a wizard from where the content of the ontology can be browsed (see figure 8.1).
The desired cell types can be quickly identified by using the search functionality. The displayed
cell types can be restricted by using several text fields to only show cell types and their subtypes
containing the text in the following properties:

• Cell type: "Cell type", "Synonyms", "OmicSoft" or "CL".

• Tissue: "Tissue".

• Free text: any property of the cell type, including "Definition" and "Comment".

Figure 8.1: View of heart cells in the QIAGEN Cell Ontology.

The pre-trained classifiers available as reference data (see chapter 2) contain only cell types
from QIAGEN Cell Ontology.

8.2 Predict Cell Types
The Predict Cell Types tool uses a Cell Type Classifier ( ) to automatically assign cell types to
the cells in the Expression Matrix ( ) / ( ) provided as input.

It can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Cell Type Classification
( ) | Predict Cell Types ( )

There are a number of options that can be adjusted (figure 8.2).

Under ‘Classifier’:
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Figure 8.2: The options in the dialog of the Predict Cell Types tool. A Cell Type Classifier for human
data downloaded from the Reference Data Manager has been selected.

• Cell type classifier. A classifier downloaded from the Reference Data Manager (see chap-
ter 2) or produced by the Train Cell Type Classifier tool (see section 8.3). Note that the
features in the input matrix and those used for training the classifier should be matching,
see section 8.3.1.

• Tissue type. Many cell types from the QIAGEN Cell Ontology (see section 8.1) are associated
with specific tissues. When one or more tissues are selected, cell types associated with
other tissues will no longer be predicted. For example, hepatocytes are associated with the
liver. If Tissue type = Heart, then no cells will be predicted as "hepatocytes". A list of cell
types that would have been predicted had no tissue type been specified can be found on
the History view ( ) of the outputs.

Under ‘Cell type refinement’, the cell type can optionally be refined (see section 8.2.2):

• Clusters (Optional). A Cell Clusters element containing clusters for the input matrix.

• Category (Optional). The category from the Cell Clusters element which contains the
clusters for cell type refinement.

• Minimum high confidence cells in cluster (%) (Optional). Cell type refinement for high
confidence cell types (see section 8.2.1) is only performed for clusters where the percentage
of cells that have a predicted high confidence cell type is larger than or equal to this.

• Minimum dominant cell type in cluster (%) (Optional). Cell type refinement is only
performed for clusters where the percentage of cells that have the dominant cell type, i.e.
the most frequent cell type, is larger than or equal to this.

• Include parent cell type in dominant cell type calculation (Optional). When enabled, cell
type refinement for clusters where the percentage of cells that have the dominant cell
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type is lower than ‘Minimum dominant cell type in cluster (%)’, will be performed using the
dominant parent cell type from the QIAGEN Cell Ontology, if its percentage is larger than or
equal to Minimum dominant cell type in cluster (%).

• Do not refine cells with probability above. Cell type refinement is only applied to cells for
which the probability of the predicted cell type is equal to or below this. When set to 1.0,
cell type refinement will be used for all cells.

Note that for Tissue type and Include parent cell type in dominant cell type calculation to have
an effect, cell types need to be from the QIAGEN Cell Ontology, see section 8.5.

8.2.1 Interpreting the output of Predict Cell Types

Predict Cell Types outputs:

• A Cell Clusters ( ) element containing two categories:

– "Cell type (all)" contains the predicted cell types, for each cell in the input matrix.

– "Cell type (high confidence)": if cell type refinement is not performed, it contains the
same predicted cell types as "Cell type (all)", but with predictions with probability below
0.5 being replaced with "Unknown". Otherwise, see section 8.2.2. High confidence
cell types can be useful for detecting novel cell types.

• Optionally, a Cell Annotations ( ) element with the probabilities assigned for a subset of
relevant cell types, for each cell in the input matrix. A cell type is considered relevant if:

– The cell type is the predicted cell type for at least one cell in the "Cell type (all)"
category, or

– There is at least one cell with a probability of at least 0.1 for the cell type.

If cell type refinement is performed, the Cell Annotations element additionally contains the
following categories:

– Refined (high confidence): "Yes" if "Cell type (high confidence)" was changed through
refinement, "No" otherwise.

– Dominant cell type % (high confidence): The percentage of cells in the cluster with the
dominant high confidence cell type before refinement.

– Dominant parent cell type % (high confidence): The percentage of cells in the cluster
with the dominant parent cell type as parent or ancestor, with high confidence, before
refinement.

– Refined (all): "Yes" if "Cell type (all)" was changed through refinement, "No" otherwise.

– Dominant cell type % (all): The percentage of cells in the cluster with the dominant cell
type before refinement.

– Dominant parent cell type % (all): The percentage of cells in the cluster with the
dominant parent cell type as parent or ancestor before refinement.

Using the outputs, the cells can be colored in a Dimensionality Reduction Plot (see chapter 16):
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• Using the Cell Clusters: by the predicted cell type.

• Using the Cell Annotations: by the probability of having a specific cell type or by whether
the initial predicted cell type has been changed due to refinement.

‘Dominant cell type % (high confidence)’ and ‘Dominant cell type % (all)’ can be used for
determining a more appropriate ‘Minimum dominant cell type in cluster (%)’.

The predicted cell types can be manually further refined in the Dimensionality Reduction Plot
(see section 17.1).

For details on how cell types are predicted, see section 8.3.3.

8.2.2 Cell type refinement

When a Cell Clusters element is provided in Clusters, the initial predicted cell types are refined
where possible, such that cells in the same cluster either have the same predicted cell type or
share a parent cell type:

• Cell type refinement is applied, independently, to both "Cell type (all)" and "Cell type (high
confidence)", see section 8.2.1.

• First, a dominant cell type is identified for each cluster:

– The most frequent cell type, if it is predicted for at least ‘Minimum dominant cell type
in cluster (%)’ cells. Otherwise:

– The most frequent parent cell type that is not "normal cells", if ‘Include parent cell
type in dominant cell type calculation’ is enabled and at least ‘Minimum dominant cell
type in cluster (%)’ cells have this cell type or are descendants from it.

If no dominant cell type is identified, refinement is not performed for this cluster.

• All cells in the cluster are reassigned to the dominant cell type if:

– The probability of the initial predicted cell type is at most ‘Do not refine cells with
probability above’. And:

– The initial predicted cell type is not a descendant of the dominant cell type.

• When applying cell type refinement to "Cell type (high confidence)":

– Cells predicted as "Unknown" (see section 8.2.1) are disregarded when calculating
frequencies for the dominant cell type.

– Refinement is performed only in clusters where the percentage of cells that are not
predicted as "Unknown" is equal to or above ‘Minimum high confidence cells in
cluster (%)’.

Consider a cluster where the following cell types are predicted:

• 20% of the cells are alpha-beta T lymphocytes,

• 35% of the cells are T lymphocytes,
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• 30% of the cells are B lymphocytes, and

• the remaining 15% are other cell types that are not descendants of lymphocytes.

T lymphocytes are the most frequent cell type, but since they constitute of less than 70% (set by
‘Minimum dominant cell type in cluster (%)’) of the cells, refinement will not be performed.

Figure 8.3: View of the QIAGEN Cell Ontology showing lymphocytes, T lymphocytes, alpha-
beta T lymphocytes and B lymphocytes.

However, alpha-beta T lymphocytes have T lymphocytes as a parent cell type, and T lymphocytes
and B lymphocytes have lymphocytes as a parent cell type (figure 8.3). Using ‘Include parent cell
type in dominant cell type calculation’, the frequency for the parent cell types is calculated:

• 55% of cells are predicted as T lymphocytes or are descendants of T lymphocytes.

• 85% of cells are descendants of lymphocytes.

Lymphocytes represent the dominant cell type since their percentage exceeds ‘Minimum dominant
cell type in cluster (%)’. The remaining 15% of the cells will therefore be refined as lymphocytes.

8.3 Train Cell Type Classifier
The Train Cell Type Classifier tool trains a Cell Type Classifier which can be used in the Predict
Cell Types tool (see section 8.2).
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The tool learns to distinguish different cell types by learning specific expression patterns from
the expression values of cells that are already assigned a cell type.

It can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Cell Type Classification
( ) | Train Cell Type Classifier ( )

The tool takes an Expression Matrix ( ) / ( ) as input. There are a number of options that can
be adjusted (figure 8.4).

Figure 8.4: The options in the dialog of the Train Cell Type Classifier tool. A Cell Type Classifier for
human data downloaded from the Reference Data Manager has been selected.

Under ‘Training’:

• Cell type clusters. A Cell Clusters element containing clusters for the input matrix.

• Cell type category. The category from the Cell Clusters element which contains the clusters
representing cell types. The tool cannot distinguish the clusters that are true cell types,
and therefore this category should only contain clusters that truly represent cell types. It is
not required for all cells to belong to a cluster and cells with unknown cell types should be
left unannotated, rather than being clustered in an "unknown" cluster.

We recommend using QIAGEN Cell Ontology cell types (see section 8.1). For this, use ‘Map
clusters to QIAGEN Cell Ontology’ when importing clusters (see section 4.2) and use the
ontology when defining new clusters in a Dimensionality Reduction Plot (see section 17.1).

• Select cell types (Optional). Only train using the selected clusters. If no cell types are
selected, all will be used. This can be used to remove undesired "unknown" clusters, or
to remove cell types that are found to reduce performance when added to an existing Cell
Type Classifier.
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Note: In order to keep the running times and the size of the resulting Cell Type Classifier
low, the tool uses up to approximately 50 training cells per cell type, which are chosen
randomly to include cells from every sample present in the data. If the data contains more
than 50 samples, one cell will be chosen randomly from each sample.

• Cell type classifier (Optional). A Cell Type Classifier downloaded from the Reference Data
Manager (see chapter 2) or produced by this tool. This allows extending existing classifiers
with new data. The cells to be used during training can be preferentially chosen from the
classifier or the input data as follows:

– Treat all cells equally. The tool will use cells from both the classifier and the input
data in a as uniform manner as possible. This is the default option and it ensures
that all samples present in both the classifier and input data are represented in the
training cells.

– Use incoming cells first. The tool will preferentially use cells from the input data. If
there are less than 50 cells for any given cell type, further cells will be chosen from
the classifier.

– Use existing cells first. The tool will preferentially use cells from the classifier. If
there are less than 50 cells for any given cell type, further cells will be chosen from
the input data.

The impact of these options can be investigated in the sample columns of the resulting
Cell Type Classifier’s table view, see section 8.5.

Note that the features in the input matrix and those used in the classifier should be
matching, see section 8.3.1.

Under ‘Validation’, the trained classifier can optionally be validated:

• Validation expression matrices (Optional). One or more Expression Matrices ( ) / ( )
containing cells on which to evaluate the performance of the Cell Type Classifier, and to
detect regressions from the existing Cell Type Classifier if present. The tool performs
validation only for cells that are not used during training, including the data present in the
existing classifier, if provided. For validation it is therefore recommended to use all existing
training data that has been previously used for training a classifier.

The report produced can be used to detect inconsistencies in the annotation between the
input matrix, the data present in the existing classifier, if used, and the validation matrices.

Note: The features in the input matrix and validation matrices should be matching,
see section 8.3.1.

• Validation cell type clusters (Optional). One or more Cell Clusters elements containing
clusters for the validation matrices. It is not required for there to be a one-to-one
correspondence between validation matrices and validation cell type clusters. For example,
a single validation Cell Clusters element may contain clusters for some of the cells in
several of the validation matrices. Only cells that are present in both a validation matrix
and a validation cell type cluster are used for validation.
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• Validation cell type category (Optional). The category from the Cell Clusters element(s)
which contains the clusters representing cell types. The tool cannot distinguish the clusters
that are true cell types, and therefore this category should only contain clusters that truly
represent cell types. It is not required for all cells to belong to a cluster and cells with
unknown cell types should be left unannotated, rather than being clustered in an "unknown"
cluster.

• Percent regression to report (Optional). Only relevant when a Cell Type Classifier has been
provided. If the threshold is x%, then in the report:

– Cell types with ≥ x% less sensitivity on the validation matrix are colored red.

– Cell types with ≥ x% more sensitivity on the validation matrix are colored green.

– Cell types with ≥ x% less sensitivity in any validation matrix are listed in a table.

– For each validation matrix with ≥ x% less sensitivity, a list of incorrect predictions to
cell types that are present in the input matrix is produced. The list is filtered to only
contain cell types that are predicted incorrectly with ≥ x% more.

Setting the threshold to 0 will produce a very detailed report of all regressions. It
is recommended to use a small non-zero value so that it is easier to spot significant
regressions.

8.3.1 Features used for training and prediction

An expression matrix has a set of features associated with it, which is either specified as a gene
or transcript track when importing a matrix (see section 4.4), or as a gene track when creating a
matrix by mapping reads using the Single Cell RNA-Seq Analysis (see section 7.1).

As feature expression is used for training a classifier and for predicting the cell types of new
cells, it is important that the features used for training, validating and predicting are compatible.
The two sets of features are mapped against each other to find matching features.

In order to do this, the ids of the features are used. If fewer than 50% of the features are found
to be matching, several mappings are created:

• Both feature sets are mapped to three standard gene annotation databases: Ensembl,
Entrez and HGNC, and an internal mapping between these databases is used to then match
the features from the two sets.

• Features are mapped by name.

The mapping resulting in the largest percentage of matching features from the classifier is used.
If this percentage is less than 50%, the tool will fail with a relevant warning message. This means
that the two feature sets are incompatible.

Two pre-trained cell type classifiers are available through the Reference Data Manager (see chap-
ter 2), one for human and another one for mouse. These classifiers have been trained on a
subset of genes, which are protein coding and are found in both the Ensembl and Entrez gene
annotations databases. Therefore, these classifiers should be compatible with most data sets.



CHAPTER 8. CELL TYPE CLASSIFICATION 111

8.3.2 Interpreting the output of Train Cell Type Classifier

Train Cell Type Classifier produces the following outputs:

• A single Cell Type Classifier ( ) element, see section 8.5.

• A single Report ( ) summarizing the cell types added to the classifier, the performance
of the new classifier on validation data (if provided), and any regressions compared to an
existing classifier (if provided).

The report has up to 4 sections depending on whether validation data or an existing classifier
were provided.

Input data cell types

The input data are the matrix and clusters from which cells are added to the classifier. They are
distinct from the validation data. The training data is the subset of the input data that is added
to the classifier, and the data already present in the existing Cell Type Classifier, if used.

The first table in this section lists the cell types in the input that have the exact same name as
a term in the QIAGEN Cell Ontology. The second table lists the remaining input cell types.

When both tables have entries, it is recommended to check for spelling mistakes or redundancy.
For example, in figure 8.5, some cells are annotated by a spelling mistake of "T lymhpocytes",
and others are annotated as "perithelial cells" - which is a synonym of the term "pericytes" from
the first table. The classifier will have attempted to learn all four types separately, which will
likely harm performance.

Figure 8.5: The "Input data cell types" section of the report. In this case, section 1.2 contains cell
types that are spelling mistakes and synonyms.

The tables have the following columns:

• Cell type. The name of the cell type.

• Already in classifier?. This column is only shown when an existing classifier is provided
and indicates whether the classifier has already been trained with this cell type.

• Cells (#). The number of cells in the input with this type. The classifier will be trained with
approximately 50 cells per cell type. If the cell type is already in the classifier, as little as
one additional cell of this type may be added during training.
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The predictions of cell types that are already in the classifier and do not have a very small number
of cells (e.g. < 20), are likely to be more accurate than predictions of new cell types with few
cells.

Validation data cell types

This section is only present when validation data is supplied to the tool.

Where possible, a performance assessment of the new classifier is made for each cell type in
the validation data.

When no assessment is possible, a table lists the affected cell types and the reasons why
assessment is not possible. The reasons are:

• No validation data. All the cells in the validation data are part of the training data. A
performance assessment based on training data would not provide a good estimate of the
actual classifier performance or whether a regression occurred.

• Cell type is not in the classifier. The new classifier (and therefore also the existing
classifier, if supplied) does not contain the cell type. The classifier(s) will never predict this
cell type correctly.

The Performance summary for validation data cell types table lists the remaining cell types in
alphabetical order. Performance is measured based on the classifiers’ prediction of the cell type
for each cell - no cells are left unlabeled. This corresponds to the "Cell type (all)" category of the
Cell Clusters element produced by the Predict Cell Types tool.

Three columns are always present:

• Cell type. The name of the cell type.

• In input data? Whether the input data contains this cell type.

• Cells (#). The number of cells used for validation.

When no existing classifier is provided, the following column is shown:

• Correct (%). The overall correct (%) from all validation data.

When an existing classifier is provided, the following additional columns are shown:

• Regressed matrices (#). The number of validation matrices where the correct (%) worsened
by more than the allowed threshold.

In general, regressions can be explained by misannotations in either the input or validation
data. A regression seen in many matrices e.g., "4 (of 5)" is likely to indicate misannotation
in the input data. If the regression is reported for "1 (of 1)", it is hard to determine whether
the misannotation is in the input or validation data.

A row is added in the subsequent tables for each regressed matrix, together with more
information which can help understanding the possible cause of the regression.
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• Change correct (%). The difference between New correct (%) and Old correct (%).

If the absolute value is larger than the allowed threshold, the corresponding entry in the
‘Cell type’ column will be colored green if the change is positive (better prediction), or red,
if the change is negative (worse prediction).

• New correct (%). The correct (%) for this cell type using the newly trained classifier.

• Old correct (%). The correct (%) for this cell type using the previous classifier.

The correct (%) is calculated as the number of cells that are correctly predicted with the respective
cell type out of the the total number of cells that are annotated with the cell type. When multiple
validation matrices are used, matrices with more cells will have more influence. This is because
each cell is weighted equally. Note that this allows an arbitrary weighting of the validation
matrices by choosing subsets of cells in the desired proportions.

Note that large apparent regressions in performance may be spurious if the number of cells in
the validation data is very low. For example, if there are 5 cells, a 20% regression indicates that
only a single additional cell was predicted incorrectly.

Regressions for cell types not/in input data

These tables are only produced when both validation data and an existing classifier are provided.
They list cell types in alphabetical order contain a row for each matrix in the Regressed matrices
(#) column of the Performance summary for validation data cell types table.

For each matrix, the additional % of incorrect predictions is listed, if:

• the % exceeds the allowed threshold;

• the predicted cell type is in the input data.

These are divided into three categories, depending on the relationship between the validation
and predicted cell type. Direct relationships describe whether two cell types are more or less
specific descriptions of the same type. They are found by mapping the two cell types to the
QIAGEN Cell Ontology via a list of known synonyms.

• Incorrect. No direct relationship can be determined. Either the mapping has been
successful and the cell types are not directly related, or the mapping is not possible.

It may be that an "Incorrect" cell type prediction is acceptable. For example, the validation
cell type may differentiate into the predicted one, or the two types may be subtypes of
the same cell type. Sometimes both explanations are possible, for example "mature B
lymphocytes" and "plasma cells" are both subtypes of "B lymphocytes", and mature B
lymphocytes differentiate into plasma cells.

• Less specific. The predicted cell type may be technically correct, but it is less specific than
the validation data cell type e.g., the predicted type is "B lymphocyte", but the validation
type is "mature B lymphocyte".

• More specific. The predicted cell type is a more specific type than the validation data
cell type e.g., the predicted type is "mature B lymphocyte", but the validation type is "B
lymphocyte".
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Ideally, no cell types should be listed in the Less specific and More specific categories for the
Regressions for cell types in input data table. This is because the input data includes both the
validation and predicted cell type, so the use of the validation cell type instead of the predicted
cell type was deliberate. Such cases always merit investigation.

The presence of cell types in the Less specific category is always a cause for concern. It suggests
that the newly trained classifier has lost some of the existing classifier’s ability to predict cells
specifically.

The presence of cell types in the More specific category can be benign. It suggests that the
newly trained classifier has gained the ability to predict cells specifically. Care should be taken
to ensure that this explanation is plausible, for example, perhaps the more specific cell type
has just been added to the classifier and/or was absent in the matrix for which the regression
occurred. If the more specific cell type is localized to a particular tissue e.g. "ovarian vascular
surface endothelial cells" instead of "endothelial cells", then it can be checked whether the
validation matrix is expected to include cells from that tissue and whether the classifier contains
a more appropriate cell type that was not predicted.

8.3.3 SVMs for cell type classification

The algorithm for cell type classification uses Support Vector Machines (SVMs). Independent
benchmarking [Abdelaal et al., 2019] has shown that SVM classifiers can outperform most
other types of classifiers for cell type prediction. The implementation uses liblinear (https:
//github.com/bwaldvogel/liblinear-java) with a series of additions:

• Feature expression is log transformed and scaled using the maximum observed expression,
such that values are placed in the interval [−1, 1].

• Weights are used to balance the size of the training classes.

• Platt scaling is applied on the decision values to obtain probabilities [Platt et al., 1999].
Note that probabilities are not normalized: the sum of the probabilities of all cell types for
one cell does not necessarily sum up to one.

• For each cell, the most likely cell type consistent with the chosen tissue(s) is assigned
from the Platt probabilities. Cells are labeled as unknown (see section 8.2) when the most
likely cell type has a Platt probability below 0.5.

Note that the algorithm uses the raw, not normalized, expression values.

8.4 Update Cell Type Classifier
The Update Cell Type Classifier tool takes one Cell Type Classifier ( ) element as input and
outputs a new Cell Type Classifier ( ) element containing updated training data.

The tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Cell Type Classification
( ) | Update Cell Type Classifier ( )

In the first wizard step ‘Update classifier’, the following options can be adjusted:

https://github.com/bwaldvogel/liblinear-java
https://github.com/bwaldvogel/liblinear-java
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• Remove cell types. The cells annotated with the selected cell types are removed from the
training data. The classifier will be re-trained.

• Remove samples. The cells from the selected samples are removed from the training data.
Cell types for which all training cells are from the removed samples will be subsequently
removed. The classifier will be re-trained.

• Rename cell types. One or more cell types are renamed. The Add button can be used to
add additional cell types to be renamed.

• Map cell types to QIAGEN Cell Ontology. When this is enabled, cell types will be translated,
if possible, to the QIAGEN Cell Ontology (see section 8.1). The translation attempts to
match each cell type with a QIAGEN cell type based on the name and known synonyms. For
example, ‘alveolar epithelial cells’ are also called ‘pneumocytes’. If this option is selected,
the ‘alveolar epithelial cells’ cell type, if present, will be named ‘pneumocytes’. This option
can be useful when standardizing cell types from different sources.

Cell types with the same name will be merged into one and the classifier will be re-trained. Cell
types are merged when:

• A cell type is renamed to an existing name.

• Two cell types are renamed to the same name.

• Two cell type names are synonyms for the same QIAGEN cell type and cell types are mapped
to the ontology.

In the next wizard step ‘Validation’, the tool can be configured to validate the resulting classifier,
as done for the Train Cell Type Classifier tool (see section 8.3). Regressions are calculated using
the input classifier.

The options above can be mixed and matched to obtain the desired output. For example, a cell
type can be first renamed and then the new name can be mapped to the ontology.

Renaming and/or mapping cell types to the ontology does not require updates to the underlying
classification model. However, the classifier will be re-trained when the training data is changed:

• Cells are removed, by removing cell types and/or samples.

• Cell types are merged. Note that the classifier will be trained with approximately 50 cells
per cell type, see section 8.3. When cell types are merged, some cells might be discarded
during training.

The Update Cell Type Classifier tool can produce a report summarizing the performed updates
and, if validation data was provided, the performance of the updated classifier as described
in section 8.3.2.

The Update Cell Type Classifier tool can also be started from the table view of the Cell Type
Classifier ( ) element (see section 8.5), where the dialog is automatically filled in with relevant
selections:

• The selected cell types can be removed or renamed.

• The sample over which the mouse hovers can be removed.
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8.5 The Cell Type Classifier element
The table view of the Cell Type Classifier gives a summary of (figure 8.6):

• the cell types the classifier has been trained on;

• the type of cell type: "QIAGEN cell type" if it is from the QIAGEN Cell Ontology, "Other"
otherwise;

• which features the classifier uses to distinguish the cell types;

• how many cells the classifier has been trained on;

• how many and which samples the classifier has been trained on.

Figure 8.6: The table view of a Cell Type Classifier trained on HCL data (http://bis.zju.edu.
cn/HCL) containing 106 different samples. For cell types present in more than 50 samples, one
cell is chosen from each sample. The sample columns (here, starting with "HCL-") contain the
number of training cells used from the respective sample. The "Top features" columns list the most
important features used by the classifier to distinguish each cell type from the rest.

Cell types that are in the QIAGEN Cell Ontology (see section 8.1) are clickable and the links
open the ontology browser with the corresponding cell type selected. In figure 8.6, ‘mast cell’
is missing a link because this cell type is named ‘mast cells’ in the ontology. For ensuring that
the link between cell types and the ontology is present where possible, use Update Cell Type
Classifier with ‘Map clusters to QIAGEN Cell Ontology’, see section 8.4. Note that this tool can
be started from the table view’s right-click menus.

The classifier assigns weights to each feature according to how informative it is for distinguishing
each cell type from the rest. The "Top features supporting this cell type" and "Top features
supporting another cell type" list up to 10 features with the largest weights. If a cell has high
expression for the features in "Top features supporting this cell type", it is a good indication that
it is of that specific cell type, while if it has high expression for the features in "Top features
supporting another cell type", it is a good indication that it is not of that specific cell type. Note
that the classifier uses more information than that summarized in these two columns, and the
combined expression for all features together with the assigned weights is used for predicting
cell types.

http://bis.zju.edu.cn/HCL
http://bis.zju.edu.cn/HCL
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If the top features are assigned ids from either Ensembl or Entrez, the feature names are
clickable and the link opens the corresponding Ensembl or Entrez webpage.

Top features and markers. The top features identified by the classifier are different than
the markers identified by the Differential Expression for Single Cell tool (see section 9.1).
A cell type marker has different expression in the cell type compared to all other cell
types, and this is calculated independently for each feature. The classifier top features
are useful jointly in recognizing a specific cell type, but might not necessarily be very
informative on their own.

Let us consider the following cell types A-D with the given average expression for features
X-Z. The cell types might then have the listed top features and markers:

A B C D

X 4 4 0 8

Y 2 4 2 6

Z 0 0 2 4

Top features supporting this cell type X X, Y Y, Z X, Y, Z

Top features supporting another cell type Y, Z Z X -

Markers - Y X, Z X, Y, Z
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9.1 Differential Expression for Single Cell
Differential Expression for Single Cell detects differentially expressed features using expressions
from an input Expression Matrix ( ) / ( ) and groupings provided by Cell Clusters ( ) or
Cell Annotations ( ).

It is often most natural to run the tool from a Dimensionality Reduction Plot by right-clicking on
the plot, see section 17 for details. However, it can also be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Expression Analysis
( ) | Differential Expression for Single Cell ( )

The tool tests if each feature is differentially expressed and outputs Statistical Comparison
Tables ( ).

The first set of options narrow down the focus of the tool:

• Clusters and Cell annotations. At least one of these must be supplied. Clusters accepts
Cell Clusters ( ) and Cell annotations accepts Cell Annotations ( ).

• Test differential expression due to a single category from the supplied Cell Clusters or
Cell Annotations. Categories that only contain true/false values or numerical data are not
supported. Tests will be performed between the groups of cells with different labels in this
category.
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• Select groups (Optional). This can be supplied to reduce the number of groups of cells
considered or to control the order in which comparisons are made.

It is easiest to understand the effects of these settings with example data from figure 9.1. If
the table shown there were supplied as either ‘Clusters’ or ‘Cell annotations’, then the possible
values of ‘Test differential expression due to’ would be ‘Sample’, ‘Status’ or ‘Cell type’ (‘Barcode’
is special and is excluded). If ‘Cell type’ were chosen, then possible groups in ‘Select groups’
would be ‘T cell’, ‘B cell’ and ‘Platelet’.

Figure 9.1: Example data consisting of cells with different cell types coming from either Case or
Control samples

From now on, we will continue with this example, assuming that Test differential expression
due to = Cell type. There are two possible types of tests: ‘All group pairs’ and ‘Identify marker
genes’.

All group pairs

In the example, there are three groups: ‘T cell’, ‘B cell’ and ‘Platelet’. When All group pairs is
selected, up to 6 pairwise comparisons can be performed. Only three of these will be output, for
example ‘T cell vs B cell’, ‘T cell vs Platelet’, and ‘B cell vs Platelet’. The other three tests, ‘B
cell vs T cell’, ‘Platelet vs T cell’, and ‘Platelet vs B cell’ will not be produced - this is because
the only difference between, for example, ‘T cell vs B cell’ and ‘B cell vs T cell’ is the sign of the
fold change.

It is possible to control exactly which comparisons are performed by using the Select groups
option. The order of any selected groups determines the direction of the comparisons. For
example, if Select groups = Platelet, B cell, T cell, then the comparisons will be ‘Platelet vs B
cell’, ‘Platelet vs T cell’, and ‘B cell vs T cell’. If Select groups = T cell, B cell, Platelet, then the
comparisons will be ‘T cell vs B cell’, ‘T cell vs Platelet’, and ‘B cell vs Platelet’.

The Select groups option can also be used to restrict the number of comparisons. If Select
groups = B cell, Platelet, then the outputs will be reduced to just those involving the selected
groups. In this case there would only be one output: ‘B cell vs Platelet’.

Identify marker genes

In the CLC Single Cell Analysis Module, marker genes are considered to be genes that are
differentially expressed in the group of interest when compared to all other groups. This does
not necessarily mean that they are only expressed in the group of interest, or are up-regulated
in the group of interest; marker genes may also have abnormally low expression (though this
is unlikely), or have an expression that, by being lower than in some groups and higher than in
others, is distinctive to the group of interest.
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In practice, the requirement that marker genes are differentially expressed compared to all other
groups can be overly strict. For example, a group might contain so few cells that it is never
possible to detect differential expression compared to this group. To avoid this problem, groups
are excluded if they have no significant differentially expressed genes relative to a majority of the
other groups. Here, significant means that the FDR p-value is less than 0.05.

Select groups determines the groups for which the markers have to be differentially expressed.
For example if Select groups = Platelet, B cell, T cell then three sets of markers will be output
‘Platelet vs rest’, ‘B cell vs rest’ and ‘T cell vs rest’. The markers for ‘Platelet vs rest’ will only
be differentially expressed when compared to B cells or T cells - if there was another cell type in
the data that had been excluded from the selected groups, then it is possible that the markers
in ‘Platelet vs rest’ would not be useful for distinguishing platelets from this additional cell type.

Marker genes are identified by first running ‘All group pairs’ and collecting the pairwise results
into marker results as detailed above.

Performing separate tests between conditions for each cell type

It is possible to make comparisons between conditions (e.g. Case vs Control) for each cell type
using the option Perform a separate test for each group in. Again this is easiest to illustrate
with reference to figure 9.1.

Using ‘All group pairs’ with Test differential expression due to = Status and Perform a separate
test for each group in = Cell type will give the outputs ‘T cell: Case vs Control’, ‘B cell: Case vs
Control’, and ‘Platelet: Case vs Control’.

Selecting genes to be tested

When a gene is expressed in too few cells, there could be too little information to reliably detect
if it is differentially expressed. A minimum number of cells expressing the gene can be set using
Minimum number of cells and Minimum percentage of cells. A gene is considered to have
insufficient expression in a group if one of the following is true:

• the number of cells expressing the gene is less than Minimum number of cells;

• the percentage of cells expressing the gene is less than Minimum percentage of cells.

When a pairwise comparison is performed, tests are not performed for genes with insufficient
expression in both groups, and the p-value is set to NaN (not a number).

This also affects ‘Identify marker genes’, as the markers are obtained from pairwise tests. For
markers, the test for a gene is not performed when the group of interest and at least one other
group have insufficient expression.
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9.1.1 Interpreting the output of Differential Expression for Single Cell

Differential Expression for Single Cell produces one or more Statistical Comparison Tables ( ).

Differentially expressed genes and clustering. Groups are often defined based on clusters
found using a clustering algorithm. Because clustering and differential expression analysis
are performed on the same data, they are not independent. This means that, even for
simulated data generated from the same distribution, random differences in expression
between genes may drive the formation of clusters, and these same genes will then
be found to be differentially expressed between the clusters. One remedy for this is to
perform clustering on half the data and differential expression on the other half. However,
it is more common to simply be cautious about over-interpreting results.

A similar warning can be made for groups defined based on cell types predicted by Predict
Cell Types - the tool works by learning the expression pattern of different genes in different
cell types. Therefore, it is likely that many differentially expressed genes between cell
types assigned by Predict Cell Types have been implicitly learned by the tool, and may not
be specific to the dataset being analyzed.

The Statistical Comparison Table element

For each gene, the table has several columns whose interpretation depends on whether the tests
performed are ‘All group pairs’ or ‘Identify marker genes’. The difference in interpretation arises
because the output of ‘Identify marker genes’ is a summary of several pairwise comparisons of
the kind produced by ‘All group pairs’.

For example, with three groups: ‘Platelet’, ‘B cell’, and ‘T cell’, ‘All group pairs’ will perform tests
such as ‘Platelet vs B cell’, whereas ‘Identify marker genes’ will perform tests such as ‘Platelet
vs rest’. ‘Platelet vs rest’, will be a summary of the pairwise comparisons ‘Platelet vs B cell’ and
‘Platelet vs T cell’.

• Case (#) , Case (%), Control (#), and Control (%). For each group in the statistical
comparison, the number (#) and percentage (%) of cells expressing the gene is calculated.
For ‘Platelet vs B cell’, the case is ‘Platelet’ and the control is ‘B cell’. For ‘Platelet vs rest’,
the case group is ‘Platelet’, and the control groups are ‘B cell’ and ‘T cell’. When there are
multiple control groups, the minimum observed values for Control (#) and Control (%) are
reported. Note that these two values might originate from two different control groups.

• Max group mean. For each group in the statistical comparison, the average expression
value is calculated. For ‘Platelet vs B cell’ the groups are ‘Platelet’ and ‘B cell’. For ‘Platelet
vs rest’ the groups are ‘Platelet’, ‘B cell’ and ‘T cell’. The ‘Max Groups Mean’ is the
maximum of the average values.

• Log2 fold change. The logarithmic fold change.

• Fold change. The (signed) fold change. Genes that are not expressed in any cells used in
the comparison have undefined fold changes and are reported as NaN (not a number). For
an output of ‘Identify marker genes’, the fold change for a gene is the smallest magnitude
fold change found in its component pairwise comparisons.
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• P-value. Standard p-value. Genes that are not expressed in sufficient cells are reported as
NaN (not a number). For an output of ‘Identify marker genes’, the p-value for a gene is the
least significant p-value among the pairwise comparisons.

• FDR p-value. The false discovery rate corrected p-value. This is calculated directly from the
values in the P-value column.

• Bonferroni. The Bonferroni corrected p-value. This is calculated directly from the values in
the P-value column.

Downstream analyses using Statistical Comparison Tables

• Visualize the relationship between the p-values and the log2 fold changes using the vol-
cano plot view, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Volcano_plots.html.

• Identify over-represented GO terms using the Gene Set Test ( ) tool, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Gene_Set_Test.

html.

• Compare differentially expressed genes from multiple Statistical Comparison Tables using
the Create Venn Diagram for RNA-Seq ( ) tool, see http://resources.qiagenbioinformatics.

com/manuals/clcgenomicsworkbench/current/index.php?manual=Create_Venn_Diagram_RNA_Seq.html.

• Compare the p-values and fold changes of all genes from multiple Statistical Comparison
Tables using the table view of the Venn diagram produced by Create Venn Diagram for RNA-
Seq ( ) tool, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Create_Venn_Diagram_RNA_Seq.html.

• Investigate pathways associated with differentially expressed genes by uploading Sta-
tistical Comparison Tables to an existing Ingenuity Pathway Analysis account using the
Pathway Analysis ( ) tool from the Ingenuity Pathway Analysis plugin, see https:
//digitalinsights.qiagen.com/plugins/ingenuity-pathway-analysis/.

Note: Settings in Gene Set Test ( ) and Pathway Analysis ( ) for filtering features using the
‘Max group mean’ need to be adjusted, as default values are based on the TPM measure of
expression, which is rarely appropriate for single cell data.

9.1.2 The differential expression algorithm

The Differential Expression for Single Cell tool performs Mann-Whitney U tests (also known as
Wilcoxon rank-sum tests) for each feature. If data is not normalized using the Normalize Single
Cell Data tool (see section 7.2), the raw expression data is used. In this situation, results should
be interpreted with caution, as differences could be solely driven by library size and other sample
preparation specific factors.

When the data is normalized using the Normalize Single Cell Data tool, the Pearson residuals
(see section 7.3.3) are used for performing the Mann-Whitney U tests. The residuals are however
difficult to interpret, and therefor the ‘Fold change’ and ‘Max group mean’ are calculated using
the estimated expression values if all cells had approximately 1, 000 reads.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Volcano_plots.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Volcano_plots.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Gene_Set_Test.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Gene_Set_Test.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Gene_Set_Test.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Create_Venn_Diagram_RNA_Seq.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Create_Venn_Diagram_RNA_Seq.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Create_Venn_Diagram_RNA_Seq.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Create_Venn_Diagram_RNA_Seq.html
https://digitalinsights.qiagen.com/plugins/ingenuity-pathway-analysis/
https://digitalinsights.qiagen.com/plugins/ingenuity-pathway-analysis/
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9.2 Create Expression Plot
Create Expression Plot generates visualizations of gene expressions for a small number of genes.
It uses expressions from an input Expression Matrix ( ) / ( ) and groupings provided by Cell
Clusters ( ) or Cell Annotations ( ).

The tool can output:

• A Heat Map ( ) with one row per gene and one column per cell.

• A Dot Plot ( ) with one row per gene and one column per grouping of cells.

• A Violin Plot ( ) with one violin distribution curve per combination of gene and group.

It is often most natural to run the tool from a Dimensionality Reduction Plot by right-clicking on
the plot, see section 17 for details. However, it can also be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Expression Analysis
( ) | Create Expression Plot ( )

The first set of options control how cells are grouped. The groupings are shown at the top of the
Heat Map, form the columns of the Dot Plot and define groups in the Violin Plot. These options
are:

• Clusters and Cell annotations. At least one of these must be supplied. Clusters accepts
Cell Clusters ( ) and Cell annotations accepts Cell Annotations ( ).

• Group by. One or more categories from the supplied Cell Clusters or Cell Annotations.
Categories that only contain non-integer numerical data are not supported. If Cell Clusters
contained a category ‘Cell type’ with values ‘T cell’, ‘B cell’ and ‘Platelet’, and Cell
Annotations contained a category ‘Status’ with values ‘Case’ and ‘Control’, then selecting
Group by = Cell type, Status would give groups ‘T cell - Case’, ‘T cell - Control’, ‘B cell -
Case’, ‘B cell - Control’, ‘Platelet - Case’, and ‘Platelet - Control’.

• Select groups (Optional). This can be supplied to reduce the number of groups of cells in
the plot to only those of interest, or to control the order in which the groups are shown. For
example, if the aim of the plot is to show how expression changes in T cells as a function
of case / control, the ‘T cell - Case’ and ‘T cell - Control’ groups can be selected. If left
empty, all groups will be displayed.

The genes in the output Heat Map or Dot Plot are clustered such that genes with similar
expression patterns are found on adjacent rows. The clustering has a tree structure that is
generated by

1. Letting each feature or sample be a cluster.

2. Calculating pairwise distances between all clusters.

3. Joining the two closest clusters into one new cluster.

4. Iterating 2-3 until there is only one cluster left (which contains all the genes).
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In the Heat Map, the clustering is drawn as a tree where distances between clusters are reflected
by the lengths of the branches in the tree.

The above algorithm requires a distance measure and a ‘linkage’ that describes how to apply the
distance measure to clusters.

There are three kinds of Distance measures:

• Euclidean distance. The ordinary distance between two points - the length of the segment
connecting them. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), then the Euclidean
distance between u and v is

|u− v| =

√√√√ n∑
i=1

(ui − vi)2.

• 1 - Pearson correlation. The Pearson correlation coefficient between two elements
x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is defined as

r =
1

n− 1

n∑
i=1

(
xi − x
sx

) ∗ (yi − y
sy

)

where x/y is the average of values in x/y and sx/sy is the sample standard deviation of
these values. It takes a value ∈ [−1, 1]. Highly correlated elements have a high absolute
value of the Pearson correlation, and elements whose values are un-informative about each
other have Pearson correlation 0. Using 1 − |Pearsoncorrelation| as distance measure
means that elements that are highly correlated will have a short distance between them,
and elements that have low correlation will be more distant from each other.

• Manhattan distance. The Manhattan distance between two points is the distance measured
along axes at right angles. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), then the
Manhattan distance between u and v is

|u− v| =
n∑

i=1

|ui − vi|.

The possible cluster linkages are:

• Single linkage. The distance between two clusters is computed as the distance between
the two closest elements in the two clusters.

• Average linkage. The distance between two clusters is computed as the average distance
between objects from the first cluster and objects from the second cluster. The averaging
is performed over all pairs (x, y), where x is an object from the first cluster and y is an
object from the second cluster.

• Complete linkage. The distance between two clusters is computed as the maximal object-
to-object distance d(xi, yj), where xi comes from the first cluster, and yj comes from the
second cluster. In other words, the distance between two clusters is computed as the
distance between the two farthest objects in the two clusters.
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There are usually too many cells for all of them to be viewed in a Heat Map on a standard
computer display. Max cells in heat map constructs the Heat Map by sampling the given number
of cells from the full Expression Matrix. This option has no effect on the Dot Plot. Sampling works
by sampling a fixed percentage of the cells in each grouping. For example, if there are 10 000
cells in the input, and ‘Max cells in heat map = 1 000’, then sampling will aim to recover 1 000
/ 10 000 = 10% of the cells for each grouping. In this example, a group with <5 cells would be
omitted, because 10% of <5 would be rounded down to 0.

There are also usually too many features to allow for a meaningful visualization of all genes.
Therefore several options can be used to select the most informative genes to visualize:

• Keep fixed number of features

– Fixed number of features This option is only available when data have been normalized
by Normalize Single Cell Data. The given number of highly variable genes (HVGs) are
selected according to the variance of their normalized values, from highest variance
to lowest variance.

• Filter by statistics Keeps features that are differentially expressed according to the
specified cut-offs. All the cut-offs must be satisfied in at least one of the input Statistical
Comparison Tables.

– Statistical comparison One or more Statistical Comparison Table, such as are
produced by Differential Expression for Single Cell.

– Minimum absolute fold change Only features with a higher absolute fold change are
kept.

– Threshold Only features with a lower p-value are kept. It is possible to select which
type of p-value to use.

• Specify features Keeps a set of features, as specified by either a feature track or by plain
text.

– Feature track Any genes or transcripts defined in the feature track will be kept.

– Keep these features A plain text list of case sensitive feature names. Any white-space
characters, and ",", and ";" are accepted as separators.

9.2.1 The Heat Map output of Create Expression Plot

In a Heat Map each row corresponds to a gene and each column to a cell. The color in the i’th
row and j’th column reflects the expression level of feature i in cell j (the color scale can be
set in the Side Panel). The expression values used are z-score normalized for each gene. This
allows the relative expression of genes with very different average expressions to be visualized
in the same plot, but means that expression values cannot be compared between genes - only
between cells for the same gene.

There are a number of options to change the appearance of the Heat Map. At the top of the Side
Panel, you find the Heat Map group (see figure 9.2).

• Lock width to window When you zoom in the Heat Map, you will per default only zoom in
on the vertical level. This is because the width of the Heat Map is locked to the window. If
you uncheck this option, you will zoom both vertically and horizontally.
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Figure 9.2: A heat map visualization of data from MacParland et al., 2018.

• Lock height to window This is the corresponding option for the height. Note that if you
check both options, you will not be able to zoom at all, since both the width and the height
are fixed.

• Lock headers and footers This will ensure that you are always able to see the cell and
feature names and the trees when you zoom in.

• Colors The expression levels are visualized using a gradient color scheme, where the
right side color is used for high expression levels and the left side color is used for low
expression levels. You can change the coloring by clicking the box, and you can change the
relative coloring of the values by dragging the two knobs on the white slider above.

Below you find the Cells and Features groups. They contain options to show names, color
legends, and, in the case of Features, trees at the left or right of the heat map. The tree options
also control the Tree size, including the option of showing the full tree, no matter how much
space it will use.

The Metadata group makes it possible to visualize all the information in the Cell Clusters and
Cell Annotations supplied when the Heat Map was created:

• Legend font settings adjusts the label settings.

• Metadata layers Adds a color bar, colored according to the chosen metadata.

9.2.2 The Dot Plot output of Create Expression Plot

A Dot Plot summarizes the expression of all the cells in a grouping for each gene (see
figure 9.3). You may need to scroll downwards or to the right to view all the data in the plot.



CHAPTER 9. EXPRESSION ANALYSIS 127

Alternatively Export Graphics can be used to export the entire plot in an image format such as
png, for more details see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Export_graphics_files.html.

In a Dot Plot, the expression values are z-score normalized like they are in the Heat Map. This
allows the relative expression of genes with very different average expressions to be visualized
in the same plot, but means that expression values cannot be compared between genes - only
between cells for the same gene.

Figure 9.3: A Dot Plot visualization of data from MacParland et al., 2018.

Each combination of gene and cell grouping is represented by a circle whose diameter is
proportional to the percentage of cells in the grouping that express that gene. Note that scaling
by diameter means that a gene expressed in 50% of cells will have one quarter the area of a gene
expressed in 100% of cells. Good marker genes will typically be present in a large percentage of
the cells for a cell type.

From the Side Panel, it is possible to change the values by which cells are colored. The options
are:

Average expression The average expression of cells with at least some expression of the gene.

Median expression The median expression of cells with at least some expression of the gene.
The median is more robust than the average in the sense that its value is less affected by
outliers.

Variance of expression The sample variance of cells with at least some expression of the gene.
In some cases, when a grouping of cells has high variance for a gene, then this may be
evidence that the grouping contains more than one population of cells. Otherwise it may
indicate that the gene’s expression changes rapidly.

The order in which the clusters or genes are arranged is adjustable in the Features and Groups
selection. Click the green plus and use the arrows to remove, add or rearrange the order of the
visualized genes or clusters. The coloring can also be changed by clicking the color gradient in
the Side Panel. The relative coloring of the values can be adjusted by dragging the two knobs on
the white slider above the color gradient.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Export_graphics_files.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Export_graphics_files.html
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9.2.3 The Violin Plot output of Create Expression Plot

Violin plots superimpose a kernel density plot on a box plot in order to provide more insight
into the distribution of expressions in a sample. The box plot shows the median as a filled
black square, the interquartile ranges as an unfilled black box, and the range of other non-outlier
measurements as whiskers. Surrounding the box plot is the estimated kernel density that shows
the shape of the data. In places with a wide distribution the probability to find data points is
much larger compared to the narrower sections (figure 9.4).

Figure 9.4: A Violin Plot visualization based on data from MacParland et al., 2018 showing a
specific feature across different groups of cells. Note the options in the Side Panel.

A number of options exist when looking at the Violin Plot Side Panel.

Violin plot Choose features, groups or a mixture to be displayed. Select how the data should be
represented: as raw counts, log(1+raw counts) or normalized.

Display settings Add a legend and values to the plot. Show and hide the box plot.

Colors Customize the colors of the individual plots.

A number of options for zooming and adjusting the size of the plot is provided. By clicking the
small icons ( ) or ( ) it is possible to fix either the x-axis or y-axis when zooming.

Several features can be displayed for one group of cells, as shown in figure 9.5. This can
be useful for identifying marker genes when the cell types are not known or they need to be
confirmed.
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Figure 9.5: A Violin Plot visualization based on data from MacParland et al., 2018. Here, selected
features are shown for hepatocyets. The percentage of cells expressing each feature is shown on
top of the violins.

It is possible to pick and choose violins from different Violin Plots and to show them together in
one plot. In order to do this, click on a feature or group label and right-click to bookmark the violin
(see figure 9.6). All bookmarked violins will then appear in the same plotting area when selecting
the bookmark option from the "Display for:" drop-down menu in the Side Panel. An example of a
mixture plot is shown in figure 9.7.

Figure 9.6: A Violin Plot visualization based on data from MacParland et al., 2018 showing how to
bookmark a violin.
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Figure 9.7: A Violin Plot visualization based on data from MacParland et al., 2018 showing
bookmarked violins with a mixture of both features and cell groups.



Chapter 10

Velocity Analysis

RNA velocity is a high-dimensional vector and a powerful approach to predict the future state of the
individual cells on a timescale of hours, from the static snapshot provided by scRNA-Seq. This can
help analyze time-resolved phenomena such as embryogenesis or tissue regeneration [La Manno
et al., 2018, Bergen et al., 2020]. Visualizing this high-dimensional vector as arrows in
a Dimensionality Reduction Plot provides an easy interpretation of the moving cell system
(figure 10.1). Arrows show the direction and speed of movement of each cell, which can reveal
differences between near-terminal cells, where arrows are short, and transient cells, where
arrows are longer.

Figure 10.1: UMAP plot of the pancreas data set [Bastidas-Ponce et al., 2019] built-in scVelo [Bergen
et al., 2020]. Arrows show the direction and speed of movement of an individual cell. The real
time cells experience as they differentiate is approximated by the latent time, shown here in the 0
(black) to 1 (yellow) range.
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10.1 Single Cell Velocity Analysis
Single Cell Velocity Analysis estimates velocities for studying cellular dynamics. It takes an
Expression Matrix with spliced and unspliced counts ( ) as input and produces a Velocity
Matrix ( ) and Cell Annotations ( ). We recommend normalizing the input with the Normalize
Single Cell Data tool (see section 7.2).

The tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Velocity Analysis ( ) |
Single Cell Velocity Analysis ( )

The tool offers options to run dimensionality reduction or feature selection prior to velocity
estimation. To perform feature selection through highly variable genes (HVGs), the data has to
be normalized first with the Normalize Single Cell Data tool. When HVGs are used, velocity is
estimated only for these genes. This can greatly speed up the calculations. We recommend using
HVGs whenever possible. Note that top velocity genes are not necessarily top HVGs. The default
value of 2,000 is a good starting point - a too small value can lead to missing important velocity
genes, while a too high value will diminish the computation gain. For details on dimensionality
reduction or feature selection, please see section 14.1.

The following additional options are available (figure 10.2):

• Neighborhood size. The number of cells ‘k’ used in the k-nearest neighbor graph for
imputing spliced and unspliced counts. This determines the granularity of the imputation.

• Model. Two models are available to estimate velocities:

– Steady-state model: infers a steady-state ratio of unspliced to spliced mRNA levels,
and determines the velocities as deviations from this ratio [La Manno et al., 2018]. It
is fast but can be less accurate.

– Dynamical model: performs a likelihood-based inference of the full splicing kinetics
and generalizes RNA velocity estimation to transient systems. Unlike the steady-state
model, it is robust to non-observed steady-states [Bergen et al., 2020], but is much
slower.

See section 10.1.2 for details.

• Calculate velocity for each sample independently. If multiple samples are present in
the input and this is enabled, the k-nearest neighbor graph, normalization and imputation
(see section 10.1.2 for details) will be performed for each sample independently, while the
remaining velocity estimation will be performed using all the cells jointly. Otherwise, all
cells are used jointly throughout the entire algorithm. We recommend running with inputs
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Figure 10.2: The options in the dialog of the Single Cell Velocity Analysis tool.

containing just one sample, and caution should be used otherwise when interpreting the
output, see discussion below.

Multi-sample input: There are no well-established approaches for joint batch correction of
spliced and unspliced counts. We recommend caution when analyzing a matrix containing
multiple samples. If the matrix is batch corrected using the Normalize Single Cell Data tool
(see section 7.2), then the correction is only applied to the total gene expression, which
is used for k-nearest neighbor graph construction, and not to the spliced and unspliced
counts, which are used for velocity estimation. See [Bergen et al., 2021] for a discussion
on batch correction for velocity estimation.

Single nucleus RNA sequencing (snRNA-Seq): Velocity estimation has been developed for
scRNA-Seq data and it is yet to be determined how well the method works for snRNA-Seq,
where the assumptions of the model might not hold [Bergen et al., 2021]. We recommend
caution when analyzing and interpreting the results for this type of data.
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10.1.1 Interpreting the output of Single Cell Velocity Analysis

Single Cell Velocity Analysis outputs:

• A Velocity Matrix ( ) containing

– the imputed spliced and unspliced counts for all sufficiently expressed genes that,
optionally, also are HVGs;

– the estimated velocities for the velocity genes;

– the cell-to-cell transition probabilities. Note that negative transition probabilities
indicate that the "from" cell is transitioning away from the "to" cell.

• A Cell Annotations ( ) containing the velocity coherence and length. If the dynamical
model was run, the output also contains the estimated latent time.

See section 10.1.2 for details.

When using the Velocity Matrix in a Dimensionality Reduction Plot (see chapter 16), the velocities
are projected onto the embedding and visualized as arrows. The velocity coherence, length and,
if available, the latent time can also be visualized in the Dimensionality Reduction Plot as any
other Cell Annotations. See section 17.1 for details.

10.1.2 The velocity estimation algorithm

The velocity estimation algorithm closely follows the approach implemented in scVelo [Bergen
et al., 2020] and it contains multiple steps, covering different scVelo methods:

1. Genes are filtered such that only the genes that are HVGs (if used) and have a sufficient
spliced and unspliced count are retained for the velocity calculations. Spliced and unspliced
counts are then normalized to correct for sequencing depth. Each type of count is divided
by the total observed count of the cell, and multiplied to the median total count across all
cells. The total counts are obtained by summing over the genes retained for the velocity
calculations.

2. A k-nearest neighbor graph is calculated using the pairwise Euclidean distance between
all cells, using either the raw or normalized, if available, total gene expression, after any
optional HVGs selection and dimensionality reduction. Using each cell’s nearest neighbors,
the spliced and unspliced counts are imputed as the average normalized spliced and
unspliced counts across the neighborhood.

3. Velocity is estimated for each gene according to the chosen model:

• Steady-state model: A linear regression on the extreme quantiles of the spliced and
unspliced counts is used to determine the steady-state ratio. Genes are considered
velocity genes if the inferred ratio and R2 are above 0.01.

• Dynamical model: To reduce computational cost, the dynamical model is only esti-
mated for genes that are considered velocity genes based on the steady-state model.
If the gene likelihood is larger than 0.001, the gene is considered a velocity gene.

Downstream analysis is only performed using the velocity genes.
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4. Transition probabilities are calculated from the cosine similarity, which measures how well
the change in gene expression can be explained by the estimated velocity vector.

5. Velocity coherence (how a velocity vector correlates with its neighboring velocities) and
length (speed or rate of differentiation) are calculated for each cell.

6. If the dynamical model was used, the gene-shared latent time representing the cells’
internal clocks is estimated by using the inferred dynamics.

Note that inference of the terminal states requires calculating the eigenvector of the
transition probability matrix corresponding to an eigenvalue 1. If the estimated eigenvalue
is not sufficiently close to 1, the resulting terminal states are not trustworthy and hence
the latent time is not calculated.

The above steps are equivalent to running the following commands in scVelo 0.2.4:

import scVelo as scv

scv.pp.filter_and_normalize(adata, min_shared_counts=20, n_top_genes=2000)
scv.pp.moments(adata, n_neighbors=30, n_pcs=20)

# only for the steady-state model
scv.tl.velocity(adata, mode=’deterministic’)

# only for the dynamical model
scv.tl.recover_dynamics(adata)
scv.tl.velocity(adata, mode=’dynamical’)

scv.tl.velocity_graph(adata)
scv.tl.get_transition_matrix(adata, scale=10, self_transitions=True, use_negative_cosines=True)

scv.tl.velocity_confidence(adata)

# only for the dynamical model
scv.tl.latent_time(adata)

Note that small differences to scVelo are expected in the results due to the different normalized
total gene expression. Additionally, the dynamical model uses numerical optimization and this
can lead to different estimated kinetic parameters and hence estimated velocities.

10.2 Differential Velocity for Single Cell
Differential Velocity for Single Cell performs differential analysis from an input Velocity Matrix
( ) and groupings provided by Cell Clusters ( ) or Cell Annotations ( ).

Note: Differential Velocity for Single Cell is complementary to Score Velocity Genes, which
reports likelihoods. Differential Velocity for Single Cell performs statistical tests to report
p-values and identify genes that show different velocity patterns in between groups of
cells.
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It is often most natural to run the tool from a Dimensionality Reduction Plot by right-clicking on
the plot, see section 17 for details. However, it can also be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Velocity Analysis ( ) |
Differential Velocity for Single Cell ( )

The tool performs a differential analysis for the velocity of each gene and outputs Statistical
Comparison Tables ( ).

The available options specify the type of test to be performed and how genes can be filtered
before testing, in a similar manner as for Differential Expression for Single Cell; see section 9.1
for details. Note that Differential Velocity for Single Cell can only run an ‘Identify marker genes’
analysis and the ‘All group pairs’ option is not available.

The tool performs pairwise comparisons by using the estimated velocities for each gene to
calculate:

• Max group mean. The maximum of the average velocities of the two groups. Can be
negative.

• Fold change. The (signed) fold change, calculated as the ratio between the average
velocities of the two groups. Note that if one group has a positive average, while the other
group has a negative average, the fold change is reported as NaN (not a number).

• P-value. The p-value is obtained from a Mann-Whitney U test (also known as Wilcoxon
rank-sum test).

See section 9.1.1 for more details on the output and section 9.1 for details on how the pairwise
comparisons are used to ‘Identify marker genes’.

10.3 Score Velocity Genes
Score Velocity Genes produces likelihoods for the velocity genes found in an input Velocity
Matrix ( ) produced with the dynamical model. It uses groupings provided by Cell Clusters ( )
or Cell Annotations ( ).

Steady-state model: It is not possible to run the tool on a matrix produced with the
steady-state model. For this, use Differential Velocity for Single Cell instead.

Note: Score Velocity Genes is complementary to Differential Velocity for Single Cell, which
performs statistical tests to report p-values. Score Velocity Genes can be used to identify
the genes driving the observed dynamics, either for the entire data set or a group of cells,
by ranking the genes (from largest to smallest) according to the likelihood. Some genes
might be equally important for two different sets of cells, without them showing differential
velocity patterns.

It is often most natural to run the tool from a Dimensionality Reduction Plot by right-clicking on
the plot, see section 17 for details. However, it can also be found in the Toolbox here:
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Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Velocity Analysis ( ) |
Score Velocity Genes ( )

The set set of options narrow down the focus of the tool:

• Clusters and Cell annotations. At least one of these must be supplied. Clusters accepts
Cell Clusters ( ) and Cell annotations accepts Cell Annotations ( ).

• Score velocity genes for a single column from the supplied Cell Clusters or Cell Annotations.
Columns that only contain true/false values or numerical data are not supported. Tests will
be performed between the groups of cells with different labels in this column.

• Select groups (Optional). This can be supplied to reduce the number of groups of cells
considered or to control the order in which comparisons are made.

For details on how groups of cells can be defined, see section 9.1.

The tool outputs the gene likelihoods obtained from the dynamical model to a table ( ), both
for the defined groups of cells, and the entire data set. The performed calculations closely follow
those from scVelo’s rank_dynamical_genes method [Bergen et al., 2020].

10.3.1 Interpreting the output of Score Velocity Genes

Score Velocity Genes produces one table ( ), with one gene per row.

For each gene, the table has several columns, depending on how the groups of cells have been
defined.

For example, if an input Velocity Matrix named ‘velocity matrix’ was used and three groups
‘Platelet’, ‘B cell’, and ‘T cell’ were defined, the output will contain the following columns:

• Name and Identifier: the gene name and identifier, as present in the input Velocity Matrix;

• velocity matrix: the score for the entire data set;

• Platelet, B cell and T cell: the scores calculated using the cells belonging to the three
groups.

Note that only the velocity genes for which velocity estimates are present in the input Velocity
Matrix are present in the output.

10.4 Create Phase Portrait Plot
Create Phase Portrait Plot can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Gene Expression ( ) | Velocity Analysis ( ) |
Create Phase Portrait Plot ( )

The tool takes a Velocity Matrix ( ) as input and produces a Phase Portrait Plot ( ) containing
phase portraits for all genes with imputed spliced and unspliced counts (see section 10.1.1 for
details). The estimated velocities and inferred dynamics can also be visualized for the velocity
genes.
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Figure 10.3: A phase portrait with inferred dynamics for the pancreas data set [Bastidas-Ponce
et al., 2019] built-in scVelo [Bergen et al., 2020].

An example output is shown in figure 10.3.

The gene to be shown in the phase portrait can be chosen under the ‘Genes’ group at the top
right of the Side Panel. When a new gene is selected, the cells are automatically colored by the
velocity component for that gene, if available.

The gene search can be limited to only showing the genes for which velocity has been estimated,
by selecting ‘Learned dynamics’ and/or ‘Steady-state ratio’ under ‘Restrict search to genes
having all of:’. Hit space in the search field to list all genes, subject to these restrictions (if any).

The inferred dynamics, if available, and steady-state ratio can be shown or hidden by toggling the
‘Show learned dynamics’ and ‘Show steady-state ratio’.

When changing to the table ( ) view of the plot, all genes for which a phase portrait is available
will be listed per row. Choosing one row in this table will update the plot to show the phase
portrait for the selected gene.

Using a Phase Portrait Plot, various aspects of the data can be visualized, see chapter 17 for
details. Note that it is not possible to edit clusters or launch tools using Phase Portrait Plots.

10.5 Velocity analysis in workflows
As velocity analysis can be computationally demanding, making it optional in workflows ensures
that:

• Velocity analysis is only performed for the samples where this information is needed.

• All data can be analyzed in a consistent manner, using one single workflow.

The Enable Velocity Analysis ( ) branching element allows for optional velocity analysis. The
matrix provided as input flows through an output channel (figure 10.4) depending on the
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configuration during execution (figure 10.5):

• Run velocity analysis. The input matrix flows through the "Run velocity analysis" output
channel.

• Skip velocity analysis. The input matrix flows through the "Skip velocity analysis" output
channel. Note that the wizard steps for the workflow elements found on the "Run velocity
analysis" path will still be present, but the options from these steps will have no effect.

Figure 10.4: Enable Velocity Analysis has one input channel for the expression matrix. The matrix
flows through one of the output channels, depending on the configuration during execution.

Figure 10.5: Enable Velocity Analysis has one option, which controls the flow to the output channels.

See http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=

Control_flow_elements.html for more details on branching elements.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Control_flow_elements.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Control_flow_elements.html
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The location of a cell in a multicellular organism is crucial for its function. Towards the goal of
fully characterizing cells’ functions and understanding tissue architecture, spatial transcriptomics
exposes tissue heterogeneity by quantifying and localizing the gene expression in the tissue
context.

CLC Single Cell Analysis Module offers a tool for importing spatial transcriptomics data from
Space Ranger spatial outputs (see section 4.6). Various aspects of the data can be visualized
using the resulting Spatial Transcriptomics Plot. Additionally, the plot can be linked to a
Dimensionality Reduction Plot, such that the same visualization can be applied simultaneously
to both plots.

11.1 The Spatial Transcriptomics Plot element
A Spatial Transcriptomics Plot ( ) represents each barcode as one point, with its position
determined by the spatial position within the tissue, optionally overlayed on an image of the
corresponding tissue (figure 11.1). The spatial position of each barcode can be seen in the table
( ) view.

Using a Spatial Transcriptomics Plot, various aspects of the data can be visualized, cells can be
manually annotated and various tools can be started using the information selected in the plot,
see chapter 17 for details.

When Overlay on image is checked, the tissue image, if available, is shown and the barcodes
are displayed on top of it. If the image contains the fiducial markers, Fit to tissue can be used
to clip the image to only show the tissue where barcodes have been detected. Using the sliders,
the brightness and contrast of the image, as well as the transparency of the points, can be
controlled.

Linking to a Dimensionality Reduction Plot

A Spatial Transcriptomics Plot can be linked to a Dimensionality Reduction Plot, such that the

140
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Figure 11.1: A Spatial Transcriptomics Plot of the GSM7962129 data from the Gene Expression
Omnibus repository. Top: Default view. Bottom: The image is fit to the tissue, and brightness,
contrast and transparency are adjusted. The barcodes are colored using the expression of KRT10.

options and selections are mirrored in both plots. For example:

• The source of colors in the Spatial Transcriptomics Plot is controlled from the Side Panel of
the Dimensionality Reduction Plot.

• Lasso selection of barcodes in one plot is reflected in the other.

The barcodes in the Dimensionality Reduction Plot and those in the Spatial Transcriptomics
Plot need to have the same sample name. Ideally, it should be ensured that these share
the sample name as a first step when importing the Spatial Transcriptomics Plot element
(see section 4.6). If this has not been done, the sample name can be updated using the
Update Single Cell Sample Name tool (see section 18.7).

To link the plots (figure 11.2):

• Open the Dimensionality Reduction Plot, if it is not already open. To visualize the
plots side by side, use a split view, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Arrange_views_in_View_Area.html for details.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Arrange_views_in_View_Area.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Arrange_views_in_View_Area.html
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• Associate the Dimensionality Reduction Plot to the Spatial Transcriptomics Plot by dragging
the Dimensionality Reduction Plot into the ’Dimensionality reduction plot’ Side Panel group
of the Spatial Transcriptomics Plot. The association can be saved by saving the changes to
the Spatial Transcriptomics Plot.

• Check Link to plot to link the two plots.

Figure 11.2: A Dimensionality Reduction Plot can be associated to a Spatial Transcriptomics Plot.
Top left: Initial view. Top right: A plot has been dragged into the Side Panel and is now associated.
Bottom left: An associated plot can be opened from the menu in the top right corner of the Side
Panel group. Bottom right: The link is active.

On subsequent uses of the Spatial Transcriptomics Plot, the Dimensionality Reduction Plot can
be opened from the Side Panel (figure 11.2).

An active link is indicated by a checkmark ( ) in the Side Panel (figure 11.2). When there is an
active link, most of the Side Panel groups for the Spatial Transcriptomics Plot are disabled and
the coloring is based on the options chosen in the Dimensionality Reduction Plot (figure 11.3).

When the active link is disabled by unchecking Link to plot, the Side Panel groups for the Spatial
Transcriptomics Plot are enabled again and the coloring is reverted to the state before the link
was activated.

The link to the Dimensionality Reduction Plot can be manually refreshed by using the ( ) button
or toggling Link to plot. This needs to be done in a number of situations:

• The Dimensionality Reduction Plot was not opened prior to being associated to the Spatial
Transcriptomics Plot.

• The current Dimensionality Reduction Plot is closed and the plot is then opened again.

• The Dimensionality Reduction Plot is closed. The Spatial Transcriptomics Plot will keep
using the colors from the Dimensionality Reduction Plot until the link is disabled.
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Figure 11.3: The source of colors in the Spatial Transcriptomics Plot is controlled from the Side
Panel of the Dimensionality Reduction Plot. Lasso selections in either plot is reflected in both plots.
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12.1 Single Cell ATAC-Seq Analysis
Single Cell ATAC-Seq Analysis can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Chromatin Accessibility ( ) | Single Cell
ATAC-Seq Analysis ( )

The tool takes as input a single read mapping ( ) of reads that have been annotated using
Annotate Single Cell Reads. The tool outputs:

• A Peak Count Matrix ( ) with annotated nearby genes and transcription factors.

• The Read Mapping ( ) that was used for peak calling.

• An Annotation Track ( ) of transcription factor motifs found within the peaks.

• A Graph Track ( ) showing the footprint score at each position.

• A Report ( ) providing a summary of the data and diagnostic plots for quality control.

It is important that the input read mapping contains all the samples that will be used in a
downstream analysis. This is because it is not possible to combine Peak Count Matrices as they
will typically have different coordinates for shared peaks. There are two ways to generate a single
read mapping from multiple samples:
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1. Provide multiple read lists to Map Reads to Reference http://resources.qiagenbioinformatics.

com/manuals/clcgenomicsworkbench/current/index.php?manual=Map_Reads_Reference.html.

2. Merge existing read mappings using Merge Read Mappings http://resources.qiagenbioinformatics.

com/manuals/clcgenomicsworkbench/current/index.php?manual=Merge_Read_Mappings.html.

The tool requires a Peak Shape Filter ( ) for calling scATAC-Seq peaks, and both a Gene track
( ) and a corresponding mRNA track ( ) for assigning nearby genes to peaks. These data can
be directly downloaded using the Reference Data Manager (see chapter 2).

It is also possible to supply custom Peak Shape Filter, Gene track and mRNA track as follows:

• Peak Shape Filters can be generated by Learn Peak Shape Filter (see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Learn_Peak_Shape_

Filter.html).

• Gene and mRNA tracks can be imported from gff/gff3/gtf files (see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_tracks.

html).

The following additional options are available:

• Maximum P-value for peak calling. The threshold for reporting peaks, higher values will
increase the number of called peaks.

• Minimum peak count. The number of peaks a barcode must have to be called as a cell.
Barcodes that do not have this many peaks will not be present in the Peak Count Matrix.
This option is the scATAC-Seq equivalent of QC for Single Cell. It is effective despite its
simplicity because:

1. Peaks must be shared by other cells to have been detected by the peak caller, meaning
that this metric is not affected by the presence of large numbers of randomly mapping
reads.

2. The minimum number of peaks is related to the amount of open chromatin per cell,
which is presumed to have a high lower bound for any active cell.

3. Sequencing is expected to sample peaks uniformly, so identifying non-cells is easier
than for gene expression, where a cell might have so much expression of one gene
that it is hard to detect others even though they are present.

• Chromosomes to ignore. As it lacks chromatin, many reads map to the mitochondria
chromosome. Ignoring the mitochondria chromosome can therefore speed up analysis and
improve results by removing the possibility that peaks are called there. If viral genomes
have been added to the reference as decoys, then these should also be ignored. When
configuring this option in a workflow, multiple chromosome names can be provided as a
comma-separated list.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Map_Reads_Reference.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Map_Reads_Reference.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Merge_Read_Mappings.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Merge_Read_Mappings.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Learn_Peak_Shape_Filter.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Learn_Peak_Shape_Filter.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Learn_Peak_Shape_Filter.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_tracks.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_tracks.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_tracks.html
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12.1.1 Interpreting the output of Single Cell ATAC-Seq Analysis

The main output of Single Cell ATAC-Seq Analysis is a Peak Count Matrix ( ). This can be used
directly in Cluster Single Cell Data, tSNE for Single Cell, and UMAP for Single Cell.

The Read Mapping ( ) that was used for calling peaks is also produced. We recommend using
this rather than the original read mapping in later analyses, because it is smaller and the shape
of peaks can be seen more clearly.

The Motif Track ( ) output shows the location of all transcription factor motifs found within
peaks. Each row in the table view ( ) contains the following information:

• Chromosome. The chromosome on which the motif was found.

• Region. The region matching the motif.

• Name. The name of the transcription factor.

• Score. The score for matching the region against the motif.

• Score threshold. The score threshold that must be reached for the match to be significant
at p-value 0.0001. This is specific to each motif - for example, longer motifs will typically
require a higher score to be as significant as shorter ones. All reported motifs have a score
higher than the score threshold. The difference between the score and score threshold for
several overlapping motifs may give an indication of which motif is the ‘best fit’ for a region.

• Footprint score. The footprint score at the middle of the motif. Higher scores show more
evidence of transcription factor binding.

• Bound. "Yes" if the footprint score is higher than a threshold determined from the data,
and otherwise "No". Only transcription factors for each peak that are bound are reported in
the Peak Count Matrix.

The Footprint Graph Track ( ) output shows the footprint score at all positions on the genome.
This is mainly provided for visualization.

The Report ( ) is useful for quality control, and is described separately in section 12.1.2.

12.1.2 The report output from Single Cell ATAC-Seq Analysis

The report contains the following sections:

Reads

For each sample, the following information is shown:

• Input read pairs. The number of paired reads in the read mapping. This includes
pairs that are mapped ambiguously, but excludes pairs on chromosomes supplied to the
Chromosomes to ignore option.

• Unique read pairs. The number of paired reads after removing reads that map ambiguously.
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• % Unique. "Unique read pairs" / "Input read pairs" x 100. If the sample was PCR amplified,
then a low "% Unique" indicates that most fragments in the sample were sequenced.

Comparing these values across samples may reveal biases. For example, if control samples
have more reads than case samples, then one might expect to see a higher proportion of cells
for each peak for the control samples.

Fragments

A single fragment size distribution plot is shown for all the data. This plot has a characteristic
shape for scATAC-Seq data, as seen in figure 12.1. The absence of this shape may indicate
failed library preparation.

Figure 12.1: A characteristic ATAC-seq fragment size distribution. The fragment size distribution
should have few fragments <30 nt as this is too small for the Tn5 transposase to bind. Short
fragments are usually most abundant. A peak should be seen at about 180 nt. Subsequent peaks
may be present with nucleosome spacing i.e. a new peak approximately 147 nt after each previous
peak. A high frequency periodicity may be observed for small fragment sizes. This is related to the
DNA helix pitch. Data is for two samples from Taavitsainen et al., 2021.

Two additional metrics are shown per sample:

• Fragments in peaks. The total number of read pairs counted per peak and barcode. This
is calculated on all barcodes before any filtering by the Minimum peak count option. For
details of which read pairs are counted, see section 12.1.3.

• % In peaks. "Fragments in peaks" / "Unique read pairs" x 100. If this is low, check the
Read Mapping output to see whether reads map to a specific chromosome that should
be ignored, are distributed evenly across the genome (which may indicate failed library
preparation), or are piled up at particular regions of high coverage. The latter is expected
to some degree, but is not expected to affect downstream analysis. Lists of known high
coverage regions are available from the ENCODE project for human and mouse [Amemiya
et al., 2019].

Tn5 bias correction
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The Tn5 enzyme has a bias towards certain sequences. This should be seen in the "before"
lines of the nucleotide frequency plots (figure 12.2). An absence of a detectable bias indicates
problems with library preparation. A different bias may reflect use of a different enzyme.

The "after" lines should show markedly less bias. Bias correction is used to improve the
assignment of transcription factors to peaks via footprinting. Failure to correct for bias may lead
to more transcription factors being associated with each peak.

Figure 12.2: A characteristic Tn5 insertion bias is seen in the "before" lines. This is reduced after
bias correction as part of footprinting. Data is for two samples from Taavitsainen et al., 2021.

Cells

A barcode rank plot is shown for all the samples. An example is shown in figure 12.3. The red
horizontal line shows the cutoff specified by the Minimum peak count option. All barcodes above
the red line are retained as cells, and all barcodes below the line are discarded. The lines for
each sample should be nearly vertical at the point where they cross the threshold line, indicating
an abrupt fall in the number of peaks at the threshold. If this is not the case, consider re-running
the tool with a different Minimum peak count.

Figure 12.3: A barcode rank plot is a log-log plot of the total number of peaks for each barcode
vs the rank of the barcode, in decreasing order of the number of peaks. Barcodes above the red
threshold line are retained as cells. Data is for two samples from Taavitsainen et al., 2021.

Two additional metrics are shown per sample:

• Barcodes before filtering. The total number of barcodes for each sample.

• Cells after filtering. The number of cells after filtering. This is the x value at which the red
threshold line meets the sample line on the plot.
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Peaks

A summary table is shown for all peaks:

• Peaks. The total number of peaks seen in the sample.

• Peaks with nearby gene. The number of these peaks that were annotated with a nearby
gene.

• % with nearby gene. "Peaks with nearby gene" / "Peaks" x 100.

• Peaks with transcription factor. The number of peaks that were annotated with a
transcription factor.

• % with transcription factor. "Peaks with transcription factor" / "Peaks" x 100.

Details are provided for peaks with nearby genes:

• Peaks with nearby gene. The number of peaks that were annotated with a nearby gene.
This is the same number as in the summary table.

• Peaks at TSS. The number of peaks whose center was within -1000nt to +100nt of a
gene’s transcription start site (TSS).

• % at TSS. "Peaks at TSS" / "Peaks with nearby gene" x 100.

12.1.3 The Single Cell ATAC-Seq Analysis algorithm

As a first step, Single Cell ATAC-Seq Analysis de-duplicates reads if they have the same "logical"
start positions and the same cell barcode. De-duplication is necessary because otherwise
duplicated reads can pile up at a position and look like peaks. One read is kept from each set
of duplicates. Ambiguously mapping reads and reads that are not in pairs are also discarded. All
subsequent analysis is performed on this de-duplicated read mapping, which is also one of the
tool’s outputs.

Peaks are then called using the CLC Shape-based Peak Caller [Strino and Lappe, 2016]. As the
peak caller does not explicitly depend on read coverage, there is no merging of nearby peaks to
rescue regions where multiple small peaks would not meet a coverage threshold. This means
that more peaks will typically be called than in approaches that merge peaks, and peaks will
more often contain just 0, 1 or 2 reads per cell as expected.

Counting reads per peak and cell

It is standard practice to correct the read start site by +4bp for forward reads and -5bp for reverse
reads such that the reads start at the center of the transcription factor binding site [Buenrostro
et al., 2013]. Reads are counted for a peak if the corrected read start for either read in a pair is
contained within the peak.
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Finding transcription factors

The sequence of each peak is scanned for transcription factor binding motifs from the HOCOMOCO
v11 Human Core Collection (i.e. those with quality A, B or C) [Kulakovskiy et al., 2018] using the
SPRY-SARUS library. It is not possible to provide a custom motif database.

HOCOMOCO provides two types of matrices: mononucleotide, which scores positions individually,
and dinucleotide, which scores two positions at a time. The use of dinucleotide matrices is
preferred because their matches are more precise. For example, a mononucleotide matrix
"AG(C/G)(T/C)A" might match the sequences "AGCTA", "AGGTA", "AGCCA", and "AGGCA". The
equivalent dinucleotide matrix might know that the C at position 3 is always followed by a T,
whereas the G is always followed by a C and so the valid matching sequences are "AGCTA" and
"AGGCA". We use dinucelotide matrices when they are available, and otherwise fall back to the
mononucleotide matrix.

Although only human HOCOMOCO motifs are searched, there is considerable orthology between
species, such that results can be informative for other species.

Motifs are reported if they meet a score threshold corresponding to a p-value of 0.0001. All
motifs exceeding this threshold are output by Single Cell ATAC-Seq Analysis in an annotation
track.

A footprinting algorithm is used to detect "valleys" within the peaks that suggest the presence
of transcription factor binding. The intuition is that the Tn5 transposase cannot cut the DNA
at a position where a transcription factor is bound, and so the peak signal is lower where
binding occurs. A "footprint" score is calculated at each position within a peak and used to filter
away transcription factor binding sites for which there is little evidence of binding. The reported
transcription factors for a peak are those with a footprint score above the calculated threshold.

The footprinting algorithm used is a Java re-implementation of the ATAcorrect, scoreBigWig and
BINDetect (for one sample) modules of TOBIAS [Bentsen et al., 2020]. Briefly, the insertion bias
of the Tn5 transposase is learned from the cut sites in the mapped reads. The observed cut
sites are then corrected for this bias. The footprinting score is calculated over a window. Better
scores are obtained if the number of corrected cut sites is high in the flanks of the window
and low in the center. A footprint score threshold is calculated from a background of randomly
sampled positions in peaks, under the assumption that most positions in peaks do not have
bound transcription factors.

There are some minor differences compared to the TOBIAS v0.12.10 implementation. The
most notable is that the determination of the footprinting score threshold starts with a simple
Gaussian fit as opposed to a 2-component Gaussian mixture model. This is because peak calling
is performed as part of Single Cell ATAC-Seq Analysis and so there is no need to model peaks
that are unobserved in the input.

Finding nearby genes

Nearby genes for a peak are likely to be regulated by that peak. Genes are assigned to peaks as
follows:

1. If the peak center is within -1000nt to +100nt of a gene’s transcription start site (TSS),
then the gene is a promoter gene for that peak. There may be multiple promoter genes for
one peak. Transcription start sites are here defined as being the first nucleotide in any of
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the supplied mRNA or gene annotations.

2. If no promoter gene is found:

• we look for a TSS within -200kb to +200kb of the peak center. The closest gene
(or genes) within that range are distal genes for the peak. There is usually only one
closest TSS.

• we also look for genes and transcripts overlapping the peak center. Any such genes
are distal genes for the peak. There may be many such genes, but usually there are
none or one.

Note that it is possible to precisely control which genes and transcripts are used for finding
nearby genes by providing custom gene and mRNA tracks to Single Cell ATAC-Seq Analysis.

The distinction between promoter and distal genes is only used in the Single Cell ATAC-Seq
Analysis report, and on export for compatibility with third party tools. It cannot be viewed in the
Peak Count Matrix.

12.2 Split Read Mapping by Cell
Split Read Mapping by Cell splits an input Read Mapping ( ) according to groupings provided
by Cell Clusters ( ) or Cell Annotations ( ). It can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Chromatin Accessibility ( ) | Split Read
Mapping by Cell ( )

There are two types of output:

• A Graph Track ( ) suitable for visualizing scATAC-Seq peaks per grouping.

• A Read Mapping ( ) per grouping, which can be used as input to Single Cell ATAC-Seq
Analysis to analyze a subset of previously analyzed data.

The options control the groups of cells for which an output is produced:

• Clusters and Cell annotations. Clusters accepts Cell Clusters ( ) and Cell annotations
accepts Cell Annotations ( ).

• Group by. One or more categories from the supplied Cell Clusters or Cell Annotations.
If neither is supplied, then it is only possible to group by ‘Sample’. Categories that only
contain non-integer numerical data are not supported. If Cell Clusters contained a category
‘Cell type’ with values ‘T cell’, ‘B cell’ and ‘Platelet’, and Cell Annotations contained a
category ‘Status’ with values ‘Case’ and ‘Control’, then selecting Group by = Cell type,
Status would give groups ‘T cell - Case’, ‘T cell - Control’, ‘B cell - Case’, ‘B cell - Control’,
‘Platelet - Case’, and ‘Platelet - Control’.

• Select groups (Optional). This can be supplied to reduce the number of groups to only
those of interest. If left empty, all groups will be output.

The tool also outputs a Report ( ) summarizing the input and the resulting cell groups.
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Peak graph tracks

The Create peak graph tracks option creates a graph of fragment coverage for each group of
cells. Only paired end reads are used to create the graph - broken pairs are discarded. Fragments
are corrected to the cut site by offsetting read start sites by +4nt for forward reads and -5nt for
reverse reads. The peak graph track often provides a more intuitive visualization of peaks than
a Read Mapping and uses much less diskspace. The visualization is more intuitive because the
unsequenced part of each fragment that lies between the two reads of a pair is counted towards
the coverage of the peak graph, but does not count towards the coverage of the Read Mapping.

It is recommended to only create peak graph tracks on read mappings that have been produced
by Single Cell ATAC-Seq Analysis, as otherwise the presence of duplicate reads can make peaks
less clear.

Peak graph tracks can be scaled in two ways. Scaling does not affect the relative height of peaks
within the same track, and so is only useful when comparing peaks in two different tracks:

• No scaling. The height of the graph track corresponds to the number of fragments
sequenced at each position. With this scaling, if one track has 5 times more reads in a
peak than the other, then the height of the peak will be 5 times greater. This allows the
signal strength for each peak for a group of cells to be seen.

• Scale by number of cells. The height of each graph track is scaled by the number of cells
in a group. With this scaling, if one track has 5 times more reads in a peak than the other,
but also 5 times more cells in the group, then the heights of the peaks will be the same.
This allows the shapes of peaks from large and small groups of cells to be compared.

To visualize the effect of scaling in a Track List, all graph tracks must be shown on the same
scale. To do this, check the Fix graph bounds option in the Side Panel. The effect of different
settings is shown in figures 12.4-12.6.

Reads tracks

The Create reads tracks option creates a Read Mapping for each group of cells. Unlike Create
peak graph tracks, no filtering or post-processing of the reads is applied: the output includes
paired end reads and broken pairs, and the original alignment coordinates are preserved (i.e.
there is no correction to the cut site).

Report

The report lists how many fragments and cells were found in the input Read Mapping:

• Fragments tables will be produced separately for paired and single reads, if there are any
such reads. Both paired reads and single reads count as one fragment. Note that a broken
pair of reads will be listed as two separate single reads and so will count as two fragments.

• Cells are split into matched and unmatched cells. If single reads are present (for example,
due to the presence of broken pairs), then the unmatched cells will be further split into cells
that are unmatched because they are not part of any group, and cells that are unmatched
because they have no paired reads.
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Figure 12.4: A Track List showing the Read Mapping coverage graph (top), called peaks, and peak
graph tracks for three groups of cells of very different sizes. Fix graph bounds is not checked in the
Side Panel, so each graph track is independently rescaled to use the available space. This means
that the graph tracks for each group appear the same regardless of whether they have no scaling
or are scaled by number of cells. Data is for one sample from Taavitsainen et al., 2021.

For each resulting cell group, the number of cells in the group is reported.



CHAPTER 12. CHROMATIN ACCESSIBILITY 154

Figure 12.5: The same Track List as in figure 12.4, but only showing the graph tracks without
scaling and with Fix graph bounds checked in the Side Panel. There are many more cells in group
3 than in group 1, and this is reflected by the heights of the graphs - the signal at each of the two
peaks is much stronger in group 3 than in group 1.

Figure 12.6: The same Track List as in figure 12.4, but only showing the graph tracks with scaling
and with Fix graph bounds checked in the Side Panel. The heights of the graphs are much greater
in group 1 than in group 3. This is because a greater fraction of the cells in group 1 than in group
3 have reads in the peaks.
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12.3 Differential Accessibility for Single Cell
Differential Accessibility for Single Cell performs differential analysis from an input Peak Count
Matrix ( ) and groupings provided by Cell Clusters ( ) or Cell Annotations ( ).

It is often most natural to run the tool from a Dimensionality Reduction Plot by right-clicking on
the plot, see section 17 for details. However, it can also be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Chromatin Accessibility ( ) | Differential
Accessibility for Single Cell ( )

The tool performs tests for differentially accessible peaks, nearby genes or transcription factors,
as specified in the ‘Data type’ options group. The tests are summarized in the output Statistical
Comparison Tables ( ), see section 9.1.1 for details.

The remaining options specify the type of test to be performed and how features can be
filtered before testing, in a similar manner as done for Differential Expression for Single Cell,
see section 9.1 for details.

Note that features that are present in few cells can lead to bands in the volcano plot,
showing the relationship between the p-values and the log2 fold changes, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Volcano_plots.html

for details. Such features can span a wide range of fold changes but often have high p-values. To
remove these bands, the features that are not present in sufficient cells can be filtered before
testing, as detailed above.

12.3.1 The differential accessibility algorithm

The Differential Accessibility for Single Cell tool performs different types of tests for the different
data types.

Peaks

As peaks are either present or not in a cell and their counts are not relevant, only the peak
presence / absence is used when performing the differential aceessbility test.

The observed presence / absence is modeled using logistic regression. Let Y be the presence /
absence of the peak and p = P(Y = 1), then the form of the model for each peak is:

logit p = ln
p

1− p
= β0 + β1gi + β2 log10mi ,

where for cell i, gi denotes the group it belongs to, and mi its total peak count. The total peak
count is used as a proxy for the total sequencing depth of the cell.

Note that the logistic regression is applied in a pairwise fashion, where gi is either 0 or 1.

The probability that the peak is present in a specific group pg = P(Yg = 1) is then estimated as

logit pg = β0 + β11g=1 + β2M ,

where 1 is the indicator function and M is the average log10mi over all cells.

The following are reported:

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Volcano_plots.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Volcano_plots.html
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• Max group mean. The maximum of the two estimated probabilities.

• Fold change. The ratio between the two estimated probabilities.

• P-value. The p-value that β1 6= 0.

Nearby Genes and Transcription Factors

When comparing nearby genes or transcription factors, the count data is first normalized using a
negative binomial (NB) generalized linear model.

The form of the model for each feature is:

logE(yi) = β0 + β1 log10mi ,

where yi are the observed counts for the feature for a cell i. The dispersion parameter
γ = 1/θ of the NB distribution is estimated during fitting using the Cox-Reid penalized adjusted
likelihood [Robinson et al., 2010]. When γ = 0 (θ = ∞), the NB distribution reduces to the
Poisson distribution.

To obtain the normalized values, the Pearson residuals are calculated as follows:

zi =
yi − exp (β0 + β1 log10mi)

σ

=
yi − ŷi
σ

=
yi − ŷi√
ŷi(1 + γŷi)

The Pearson residuals are, however, difficult to interpret, and therefore the following is used for
calculating average counts for each group:

log ỹi = β0 + β1M .

The following are reported for pairwise comparisons:

• Max group mean. The maximum of the average ỹi of the two groups.

• Fold change. The ratio between the average ỹi of the two groups.

• P-value. The p-value obtained from a Mann-Whitney U test (also known as Wilcoxon
rank-sum test) on the Pearson residuals.

Note that when identifying markers, the reported ‘Max group mean’, ‘Fold change’ and ‘P-value’,
regardless of the data type used for the test, are aggregated across all pairwise comparisons,
as detailed in section 9.1.

For more details on the outputs, see section 9.1.1.
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T and B cells form our acquired immune response. They both contain highly variable receptors
(see figure 13.1) with binding sites that recognize antigens.

T and B cell receptors (TCR and BCR, respectively) are composed of multiple polypeptide chains:
TCRs contain one pair, while BCRs contain two copies of a pair:

• TCR: α (TRA) and β (TRB), or γ (TRG) and δ (TRD).

• BCR: light and heavy. There are two types of light chains in humans: κ (IGK) and λ (IGL),
while other animals also contain other types of light chains. Once set, the light chain
class remains fixed for the life of the B cell. There are five types of heavy chains (IGH) for
mammals: γ, δ, α, µ and η, defining the class of the receptor.

The chains are encoded by genes that undergo somatic recombination. During this process,
gene segments are joined with random nucleotides at the junction sites. There are two types of
recombination (see figure 13.2):
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Figure 13.1: T and B cell receptors structure. Each pair of chains forms an antigen binding site
that binds to specific antigens.

• VJ recombination, where one V (variable) gene segment is joined to a J (joining) gene
segment;

• VDJ recombination, where a D (diversity) gene segment is added between the V and J gene
segments.

Figure 13.2: VDJ recombination brings together a V, D, J and C gene segment.

For both types of recombination, a C (constant) gene segment is also added following the J
segment.

The TRA and TRG chains are the result of VJ recombination, while the TRB and TRD chains are
the result of VDJ recombination. The V, D, J and C gene segments are specific for each TCR
chain type.

BCR light chains are the result of VJ recombination, while BCR heavy chains are the result of VDJ
recombination. BCR heavy chains have three to four C gene segments. The V, D, J and C gene
segments are specific for each BCR light chain type, while they are shared by the BCR heavy
chains.
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Each chain contains three "complementary-determining regions" (CDRs) (figure 13.2) which form
loops in the antigen binding sites. The V(D)J recombination junction is located in the third
CDR (CDR3). Due to inclusion of random nucleotides at the junctions between segments, the
CDR3 is the most diverse among the three CDRs. Its beginning and end are marked by a
conserved cysteine (C) and phenylalanine/tryptophan (F/W) amino-acid in the V and J segments,
respectively.

CLC Single Cell Analysis Module offers tools to clonotype reads and characterize the T or B cell
receptor repertoire (section 13.1), filter the repertoires (section 13.3), combine them across
samples (section 13.4), compare them (section 13.5) and convert them to cell annotations
(section 13.6) for easy visualization on Dimensionality Reduction Plots.

Here, clonotyping consists of identifying which V, D, J and C segments from the reference data
(section 13.1) are used, and extracting the CDR3 region found between the conserved amino
acids.

13.1 Single Cell V(D)J-Seq Analysis
Single Cell V(D)J-Seq Analysis can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Immune Repertoire ( ) | Single Cell V(D)J-Seq
Analysis ( )

The tool takes as input one or more Sequence Lists ( ) of reads that have been annotated using
Annotate Single Cell Reads. It outputs a TCR Cell Clonotypes ( ) or BCR Cell Clonotypes ( )
element (see section 13.2), and optionally a report.

Sample: All input sequence lists must originate from the same sample, which is set when
executing the Annotate Single Cell Reads tool (see section 6.1). This is because Single
Cell V(D)J-Seq Analysis assumes that reads with the same cell barcode that are present
in different inputs represent the same cell. The wizard does not allow executing the tool
with inputs that are annotated with different samples.

It is important to provide all the data for a sample to Single Cell V(D)J-Seq Analysis at
the same time. For example, if one sample was sequenced on 4 lanes of an Illumina
sequencer, then all 4 lanes should be supplied together. This allows reads originating
from the same cell, but coming from different lanes, to be analyzed jointly and leads to a
more accurate clonotype identification.

Barcode whitelists: In some protocols, the set of valid barcodes is known in advance,
and available as a barcode whitelist. In CLC Single Cell Analysis Module, it is not possible
to directly use such a list. Instead, the Filter Cell Clonotypes can be used for filtering the
Cell Clonotypes output such that only barcodes that are identified as cells are retained,
such as those identified as cells in matched scRNA-Seq data. Additionally, the Filter Cell
Clonotypes can be used for retaining only the desired types of clonotypes, for example
only those that are productive. See section 13.3 for details.
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Note: Different runs can result in slightly different results. This is caused by multi-threading
of the program combined with the use of probabilistic data structures. The overall content
of the Cell Clonotypes should not be markedly different.

The following options can be adjusted (figure 13.3):

Figure 13.3: The options in the dialog of the Single Cell V(D)J-Seq Analysis tool. Human reference
data downloaded from the Reference Data Manager has been selected.

• Reference segments. The V (variable), D (diversity), J (joining) and C (constant) segments.
These are used during clonotype identification and determine whether the tool outputs a
TCR Cell Clonotypes ( ) or BCR Cell Clonotypes ( ) element. The reference segments
can either be

– imported using Import Immune Reference Segments (see section 4.8);

– downloaded from the Reference Data Manager (see chapter 2).

13.1.1 The report output from Single Cell V(D)J-Seq Analysis

The optional report includes information for different chain types:

• For TCR Cell Clonotypes: TRA + TRB, TRA, TRB, TRG + TRD, TRG, and TRD;

• For BCR Cell Clonotypes: IGH + IGK, IGH + IGL, IGH, IGK, and IGL.

Only the chain types that are found in the Cell Clonotypes are present in the report.

The following information is provided for each different chain type:

• Summary. Summary tables with information about the performed assembly, trimming and
identified clonotypes. See section 13.1.2 for more details.

• Diversity indices. Several diversity indices, as listed below. The extrapolated diversity
gives a projection of what the diversity would have been if the sample had been sequenced
deeply enough to identify all clonotypes.

– Distinct clonotypes: The number of different clonotypes detected.

– Extrapolated diversity (chaoE): The extrapolated number of detected distinct clonotypes
as described in [Chao, 1987].
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– Lorenz curve at 50% of total: The fraction of all detected clonotypes that account for
50% of the total count. Also sometimes denoted as D50.

– Inverse Simpson’s index: Let ci denote the count for the ith distinct clonotype and let
n =

∑
i ci. Then the inverse Simpon’s index is defined as:∑

i

1

ci/n
.

– Extrapolated Inverse Simpson’s index (chaoE): The extrapolated inverse Simpson’s
index as described in [Chao et al., 2014].

– Shannon-Wiener index: With ci and n defined as above, the Shannon-Wiener index is
defined as: ∑

i

ci
n
ln
(ci
n

)
.

– Extrapolated Shannon-Wiener index (chaoE): The extrapolated Shannon-Wiener index
as described in [Chao et al., 2013].

• Rarefaction. Rarefaction curves, also known as species accumulation curves. They show
the expected number of distinct clonotypes discovered as a function of the total number
of detected clonotypes, together with the confidence interval (CI), obtained from a normal
approximation. The curve is

– interpolated down to 0 clonotypes;

– extrapolated to twice the total number of detected clonotypes.

• CDR3 length. The distribution of the length of the CDR3 nucleotide sequences for all
detected clonotypes. Peaks are expected every 3 nucleotides due to repertoires consisting
predominantly of in-frame CDR3 sequences.

• V, D, J and C usage. Bar plots showing the V, D, J and C segment usage for all detected
clonotypes.

• Frequencies. The percentage of all detected clonotypes that are unique and the clonotype
abundance: how many distinct clonotypes are found with abundance (count) i. Most
clonotypes are expected to be unique, so the percentage is close to 100% and most
clonotypes have abundance 1.

• Productive summary. The percentage of all detected clonotypes that have productive CDR3
nucleotide sequences, and the percentage of barcodes with at least one productive CDR3
nucleotide sequence.

Note that for diversity indices and rarefaction, the number of distinct clonotypes is used. For the
rest of the report, the number of detected clonotypes contains all clonotypes for all barcodes,
where if more than one barcode has the same clonotype, this is counted multiple times.

13.1.2 The clonotype identification algorithm

The algorithm for identifying the clonotypes is composed of three sequential steps described
below.
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Assembly

All reads originating from the same barcode are collected and:

• Barcodes containing ambiguous nucleotides are discarded.

• Barcodes with less than 5 UMIs are discarded.

• Barcodes with more than 80,000 reads are down-sampled to about 80,000 reads.

• Remaining reads are de novo assembled into contigs.

• Contigs shorter than 60 nucleotides are discarded.

• The reads are mapped back to the valid contigs and the contigs are adjusted by the mapped
reads.

• Contigs and barcodes of low quality are discarded. The following are required:

– Contigs should have an average coverage of at least 5.

– Contigs should have at least 20 mapped reads.

– If more than four contigs are assembled, contigs should have an average coverage of
at least the median average coverage of all contigs.

– Barcodes should have at least 3 UMIs mapped to high-quality contigs.

The assemble summary reports:

• the number of input barcodes and reads;

• the number of processed barcodes (those without ambiguous nucleotides) and reads (those
left after down-sampling);

• the number of barcodes that have been discarded;

• the number of barcodes and high-quality contigs that have been successfully assembled;

Trimming

Prior to clonotype identification, the contigs are trimmed with the following settings:

• The ends of the contigs are trimmed using 0.05 "Quality limit" and 2 "Maximum number of
ambiguities", see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Quality_trimming.html.

• Contigs shorter than 60 nucleotides after trimming are discarded.

The trimming summary reports the average length of the contigs before and after trimming, and
how many barcodes and contigs remain after trimming.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Quality_trimming.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Quality_trimming.html
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Clonotype identification

Clonotyping a contig consists of identifying which V, D, J and C segments from the reference data
are used, and extracting the CDR3 region found between the conserved amino acids.

The identification of the segments is done by mapping the contigs against the references provided
in "Reference segments".

Depending on the length and diversity of the segment that is covered by the contig, it might
not be possible to unambiguously detect the segment. In this case, all possible segments are
reported.

The V and J segments are required for successfully clonotyping a read, because otherwise
the CDR3 cannot be determined.

The D and C segments are optional. Note that the (lack of) identification of these
two segment types can lead to the tool reporting clonotypes as the same or different
clonotypes:

• If two cells have the same assigned V and J segments and share the CDR3
sequence, they would typically be considered to have the same clonotype. However,
if for one cell the C segment is successfully identified, but the contigs for the other
cell did not cover the C segment, their two clonotypes will be reported separately.

• If two contigs for the same cell have the same assigned V and J segments and
a CDR3 sequence that is almost the same, they would typically be merged and
be considered to have the same clonotype (see below). However, due to the non-
identical CDR3 sequence, one contig might have a D segment assigned, while the
other might not, hence the two clonotypes will be considered to be distinct.

After the initial clonotyping of the contigs, merging of clonotypes identified for the same barcode
is performed as follows:

• If a clonotype has ambiguously assigned segments, it will be merged, if possible, into a
clonotype with the same CDR3 and less ambiguous segments that are a subset of the
former clonotype’s segments.

• If two clonotypes exist with the same segments, but differing by a single nucleotide in the
CDR3 sequence, the clonotype with fewer contigs will be merged into the other.

13.2 The Cell Clonotypes element
Both TCR Cell Clonotypes ( ) and BCR Cell Clonotypes ( ) elements contain the clonotypes
and have a number of views, displaying different properties / summaries of the clonotypes.

13.2.1 Primary and secondary clonotypes

During the somatic recombination, the two chromosomes recombine independently, and typically
this process leads to only one functional gene for each chain type. The second copy of the gene,
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most often non-functional, can still be expressed and captured by scV(D)J-Seq. Hence, for each
cell, it is possible for up to two different copies of the same chain type to be present in a cell:

• Primary: The copy that leads to a productive CDR3. If no productive CDR3s are identified,
then the copy with the highest UMI count.

• Secondary: The second copy, if present.

For example:

• If a T cell contains two productive TRB chains, the chain with the highest number of UMIs
will be part of the primary clonotype, while the chain with the lowest number will be part of
the secondary clonotype.

• If a B cell contains two light chains and only one is productive, the productive chain will be
part of the primary clonotype, while the unproductive chain will be part of the secondary
clonotype.

The Cell Clonotypes created by the Single Cell V(D)J-Seq Analysis tool only contain primary /
secondary clonotypes. Imported clonotypes (see section 4.3) and those produced by Combine
Cell Clonotypes (see section 13.4) can have barcodes with more clonotypes. These additional
clonotypes are presented as "Subsequent" and are biologically unlikely. They can be removed
using the Filter Cell Clonotypes, see section 13.3 for details.

13.2.2 Cell Clonotypes tables

The Cell Clonotypes elements contain two table views, centered around the clonotypes ( ) and
barcodes ( ). Multiple clonotypes can be identified for a barcode, where each clonotype is for
one chain. These are the cell-level clonotypes ( ). Clonotypes ( ) can have more than one
chain (see below). For a given chain, the clonotype consists of multiple cell-level clonotypes with
the same characteristics. The different chains present in one clonotype are supported by the
corresponding cell-level clonotypes being present in the same barcode.

Both views contain the following information (see figure 13.4):

• Clonotype #. A unique number identifying the clonotype.

• Chain: Which chain the clonotype belongs to. Can be:

– For TCR Cell Clonotypes: TRA, TRB, TRA + TRB, TRG, TRD, and TRG + TRD;

– For BCR Cell Clonotypes: IGH, IGK, IGL, IGH + IGK, and IGH + IGL.

Cell-level clonotypes have only one chain.

• V / D / J / C. The identified V, D, J and C reference segment(s), respectively. If a single
unambiguous segment cannot be identified, the segments are separated by a comma.

• CDR3 nucleotide sequence. The nucleotide sequence for CDR3 including the V- and J
region-encoded conserved motifs.
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Figure 13.4: Views of the same TCR Cell Clonotypes element. Note that not all table columns
are shown. Clonotype with number 9 is highlighted in both views. Top: View centered around the
identified clonotypes, sorted after the number of barcodes. All identified chains for the clonotype
are shown. For example, clonotype 9 contains both a TRA and TRB chain, while clonotypes 10 and
11 contain only a TRB and TRA chain, respectively. When a clonotype is selected, a second table
lists the barcodes with the corresponding clonotype. Bottom: View centered around the barcodes,
sorted by barcode. Rows with the same barcode have the same background color when the table
is sorted after the barcode.

• CDR3 amino acid sequence. The translated amino acid sequence for the CDR3 nucleotide
sequence, provided that it is in-frame.

• CDR3 length. The length of the CDR3 nucleotide sequence.

• Productive. One of three categories are used to characterize the CDR3 nucleotide
sequence:

– Productive. Sequences that are in frame and do not contain a premature stop codon.

– Out-of-frame. Sequences that have a length that is not a multiple of three.

– Premature stop codon. Sequences that contain an in-frame premature stop codon.

Note that the Filter Cell Clonotypes can be used for retaining only the productive clonotypes,
see section 13.3 for details.

The view centered around the identified clonotypes ( ) additionally contains:

• Barcodes. The number of barcodes with the given clonotype.

• Primary (%). The percentage of clonotypes that were the primary clonotype for their
respective barcode, see section 13.2.1.
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Clicking on a row in this view opens a new table listing the corresponding barcodes (see
figure 13.4).

The cell-level clonotypes view ( ) also provides (see figure 13.4):

• Cell-level clonotype #. A unique number identifying the barcode and clonotype.

• Sample / Barcode. The sample and barcode.

• Reads. The number of reads from the barcode that mapped to the contig from which the
specific CDR3 sequence was detected.

• UMIs. The number of unique UMIs the aligned reads correspond to.

• Copy rank. Primary, Secondary or Subsequent, see section 13.2.1.

13.2.3 Cell Clonotypes alignments

The alignments view ( ) shows all assembled contigs mapping to a specific clonotype
(figure 13.5).

Figure 13.5: Read mapping for the TRB clonotype from a clonotype containing both TRA and TRB.
V, D, J and C segments are annotated on the reference sequence and the CDR3 is annotated on
the consensus.

The alignment contains:
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• The reference sequence consisting of the identified V(D)JC segments. Annotations indicate
the location of the different segment types. For clonotypes with ambiguous segments, only
one of the identified segments is used.

• The consensus sequence with an annotation indicating the CDR3 region.

• The aligned contigs.

The clonotypes for which the alignment should be shown can be selected from the drop-down
menus in the Side Panel, or from one of the clonotype tables (section 13.2.2) while using a split
view (figure 13.6).

Figure 13.6: Clonotypes split view. Top: multiple clonotypes sharing reference segments are
selected in the table view. Bottom: Alignment view for the clonotypes selected in the table view.

Alignments for multiple clonotypes can be shown together provided that they have the same
chain, V and J segments and the D / C segments are not contradictory: either the D / C segment
is identified and the same, or it is missing (figure 13.6).

When viewing alignments for multiple clonotypes, it can be useful to change "Compactness" to
"Not compact" and tick the "Sample", "Barcode", "Cell-level clonotype #" and "Clonotype #"
from the Side Panel. This way, it is easy to see this information for each of the aligned contigs
(figure 13.7)).

Figure 13.6 shows an alignment for multiple clonotypes. Some of the contigs do not span past
the J segment and using the "Clonotype #" annotation (figure 13.7)), we can confirm that these
contigs belong to clonotypes for which the C segment has not been identified. Some of the
clonotypes share the D segment, while others do not have an identified D segment. They all have
different CDR3 sequences. Using the alignment view, it is straightforward to spot the differences
between the CDR3 sequences.
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Figure 13.7: Alignment view for multiple clonotypes where "Compactness" is set to "Not compact"
and "Clonotype #" is ticked.

For further processing, the alignments can be opened and saved as a stand-alone read mapping
by using the "Open as Read Mapping" button. Using the Extract Reads tool (see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Extract_Reads.html),
the contigs can be extracted from the stand-alone read mapping as a Sequence List ( ), which
can be used as input to Single Cell V(D)J-Seq Analysis. The tool will then skip the assembly and
trimming and only clonotype the contigs (see section 13.1.2). This allows for custom processing
of the contigs, where additional trimming can be performed before clonotyping.

Various settings controlling how the alignment, consensus and reference are displayed can be con-
figured in the Side Panel, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=View_settings_in_Side_Panel.html.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Extract_Reads.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Extract_Reads.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=View_settings_in_Side_Panel.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=View_settings_in_Side_Panel.html
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13.2.4 Cell Clonotypes Sankey plot

The Sankey plot view ( )

• shows how the segments of different types form the clonotypes for a given chain, when
"Show column per" is set to "Grouping property" in the Side Panel (figure 13.8);

• compares clonotypes frequencies across samples, when "Show column per" is set to
"Sample" in the Side Panel (figure 13.10). This option is available only for Cell Clonotypes
containing more than one sample.

Note that only primary clonotypes (see section 13.2.1) are included in the Sankey plot. For
visualizing secondary clonotypes, run first Filter Cell Clonotypes with ‘Multiple clonotypes’ set to
‘Retain secondary’, see section 13.3 for details.

To keep the plot size manageable, it is recommended to filter the clonotypes using the Filter Cell
Clonotypes tool.

Grouping property

Figure 13.8: Sankey plot for the TRA and TRB chains showing the V and J segments. Numbers in
brackets show the total barcode count. Flows show how many barcodes have clonotypes with the
specific chain and segment combinations. The plot is restricted to showing only the most common
5 TRA-V segment. The box for TRA-J-45 contains a white region because there are barcodes with
TRA-J-45 that have a TRA-V segment that is different than those present in the plot.

For each selected segment type, the plot has a column that contains boxes for each segment.
The box height reflects the total number of cells containing clonotypes with the given segment.
The boxes are connected with flows. The color of a flow indicates the element where the flow
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starts. "Flows start at" can be used to change the start column, by default the leftmost. "Show
continuous flows" controls the type of the flows:

• If not ticked, there are flows between boxes in consecutive columns for clonotypes having
segments corresponding to the boxes. The height of the flow indicates the total number of
cells for these clonotypes.

• If ticked, the flows start from the fixed column defined by "Flows start at". When the
flow starts at the leftmost column, flows between boxes in the first two columns reflect
clonotypes with segments corresponding to the two boxes. Flows between boxes in the
second and third column reflect clonotypes corresponding to the boxes in both the first,
second and third column, and so on.

"Show continuous flows" has no effect when there are less than three columns.

Boxes can be removed from the plot by using the options under "Filtering" in the Side Panel
(figure 13.8). The plot will show only boxes for the selected segments and the boxes to which
the selected segments have a flow. If multiple filters are used, boxes are subject to all the
restrictions (figure 13.9).

The columns and their order can be changed by using the options under "Group by" in the Side
Panel. The CDR3 amino acid sequences can also be shown, see figure 13.9.

Figure 13.9: Sankey plot for the TRA and TRB chains showing the V(D)JC segments and CDR3. The
plot is filtered to show only the most common 5 TRA and TRB V(D)JC segments. Note that only 4
boxes for TRA-VJC and TRB-VDJC are present in the plot, because there are no barcodes containing
both of the missing TRA-VJC and TRB-VDJC. Clonotypes can have CDR3s that are out of frame and
are hence missing a CDR3 AA. These are shown in the None box.
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Figure 13.10: Sankey plot for the TRA and TRB chains showing the clonotypes count with specific
V and J segments, compared across samples. Number in brackets show the total barcode count.

Sample

For each selected sample, the plot has a column that contains boxes for each group of clonotypes
(hereafter referred to as simply clonotypes) with the selected properties. The properties, such
as the segment type or the CDR3 amino acid sequence, are selected from the Side Panel under
"Group by".

The height of a box indicates the frequency of the clonotypes in the sample. The frequency is
defined as the number of barcodes with the specific clonotype, divided by the total number of
barcodes found in the sample.

13.3 Filter Cell Clonotypes
Sometimes it can be desirable to restrict TCR Cell Clonotypes ( ) or BCR Cell Clonotypes
( ) to only a specific subset, for example only productive clonotypes, or only barcodes that
are present in matched scRNA-Seq data. This can be achieved with the Filter Cell Clonotypes
tool. Alternatively, the clonotypes can be filtered to a selection in the Cell Clonotypes tables
(section 13.2.2) by using the option "Create Cell Clonotypes from Selection" from the right-click
menu.

The Filter Cell Clonotypes tool can be found in the Toolbox here:
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Toolbox | Single Cell Analysis ( ) | Immune Repertoire ( ) | Filter Cell Clonotypes
( )

The tool takes a Cell Clonotypes element as input and produces a filtered element.

The following options can be adjusted (figure 13.11):

Figure 13.11: The options in the dialog of the Filter Cell Clonotypes tool.

• Barcodes to retain. Multiple elements containing cells can be provided, such as Expression
Matrices, Cell Clusters and Cell Annotations. From these, a set of valid cells, identified
through the sample and barcode, is obtained as the intersection of the cells in the chosen
elements. When used, only the clonotypes for the valid cells are retained in the output.

• Productive status to retain. A mixture of ‘Productive’, ‘Out of frame’ and ‘Premature stop
codon’ can be chosen and only the clonotypes with the respective productive status will be
retained. If left empty, no filter is applied.

• Chains to retain. A mixture of:

– for TCR Cell Clonotypes: TRA, TRB, TRG and TRD;

– for BCR Cell Clonotypes: IGH, IGK and IGL;

can be chosen. Only the clonotypes with the respective chains will be retained. If left
empty, no filter is applied.

• Combined chains to retain. A mixture of:

– for TCR Cell Clonotypes: TRA + TRB and TRG + TRG;

– for BCR Cell Clonotypes: IGH + IGK and IGH + IGL;
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can be chosen. Only clonotypes that contain all chains in the combination are retained. This
can be used for removing barcodes for which not all desired chains have been identified. If
left empty, no filter is applied.

• Segment types to retain. A mixture of ‘V’, ‘D’, ‘J’ and ‘C’ can be chosen and only the
clonotypes that have identified segments for all respective segment types will be retained.
This means that, for example, if ‘D’ is chosen, only chains for which the D segment is used
will be retained, and for those chains, only the clonotypes for which the identification of the
D segment was successful will be retained. If left empty, no filter is applied.

• Multiple clonotypes. Barcodes can have more than one clonotype associated with them,
see section 13.2.1. Different types of filters can be chosen:

– Retain all. No filter is applied and all clonotypes are retained.

– Retain primary. Only the primary clonotypes are retained.

– Retain secondary. Only the secondary clonotypes are retained.

– Retain primary and secondary. Both the primary and the secondary clonotypes are
retained.

– Retain none. Only barcodes containing just primary clonotypes are retained.

The options above can be mixed and matched to obtain the desired output. Note that the filters
are applied in the order given above.

For example, assume we want to only use the primary TRB clonotypes with D segments. This
can be obtained by setting "Chains to retain" to "TRB", "Segment types to retain" to "D", and
"Multiple clonotypes" to "Retain primary". If one barcode A has a primary TRB clonotype without
D segments and a secondary TRB clonotype with D segments, the former will be removed first
and the second with D segments will become the primary one. Hence, "Retain primary" will have
no effect on this barcode. If another barcode has two TRB clonotypes with D segments, "Retain
primary" will remove the secondary clonotype.

If the desired behavior is that barcode A should be entirely removed from the output, as its
primary TRB clonotype does not have D segments, the tool can be run multiple times such that
the filters are applied in a different order. By running the tool with "Multiple clonotypes" set to
"Retain primary" first, the barcode will have only the clonotype without D segments. A second
execution of the tool with "Segment types to retain" set to "D" will entirely remove the barcode.

The Filter Cell Clonotypes tool can optionally produce a report for each sample found in the input
element, summarizing the clonotypes left after filtering. The output report includes the same
information as the report produced by the Single Cell V(D)J-Seq Analysis tool, minus the assembly
and trimming summaries (see section 13.1.1).

To obtain a report summarizing clonotypes across samples, see section 13.5.

13.4 Combine Cell Clonotypes
The Combine Cell Clonotypes tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Immune Repertoire ( ) | Combine Cell
Clonotypes ( )
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The tool takes as input multiple TCR Cell Clonotypes ( ) or BCR Cell Clonotypes ( ) elements
and outputs a single Cell Clonotypes element. This can be useful to reduce the number of
elements needed to describe a set of cells.

Note that TCR Cell Clonotypes and BCR Cell Clonotypes cannot be mixed and only one type
should be used at a time.

The tool is very flexible and it supports:

• Different clonotypes for the same cells.

• Clonotypes for different cells.

Cells are considered to be the same if they have the same sample and barcode.

If different clonotypes are identified for the same cell, they will all be collected in the output.
While a cell can have up to two different clonotypes for the same chain type (see section 13.2.1),
this tool can lead to barcodes having an arbitrary number of clonotypes. Clonotypes marked
as "Subsequent" are biologically unlikely and if the output Cell Clonotypes element contains
subsequent clonotypes, it is an indication that the incorrect elements have been combined.
Subsequent clonotypes can be removed using the Filter Cell Clonotypes tool, see section 13.3.

13.5 Compare Cell Clonotypes
Compare Cell Clonotypes contrasts properties, such as diversity and similarity, of the immune
repertoires identified for groups of cells, as determined by the sample or, when available, through
Cell Clusters ( ) or Cell Annotations ( ).

The Compare Cell Clonotypes tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Immune Repertoire ( ) | Compare Cell
Clonotypes ( )

The tool takes a TCR Cell Clonotypes ( ) or BCR Cell Clonotypes ( ) element as input. If the
clonotypes to be compared are found in different elements, these can be combined using the
Combine Cell Clonotypes tool, see section 13.4 for details.

The following options can be adjusted (figure 13.12):

• Clusters and Cell annotations (Optional). Clusters accepts Cell Clusters ( ) and Cell
annotations accepts Cell Annotations ( ). These can be created within the CLC Single
Cell Analysis Module for scRNA-Seq data, but they can also be imported, see section 4.1
and section 4.2 for details.

• Group by. Any categories from the supplied Cell Clusters or Cell Annotations. "Sample"
can be additionally chosen, even if no Cell Clusters or Cell Annotations are provided.

If Cell Annotations contained a category ‘Infection’ with values ‘Pre’ and ‘Post’, and another
category ‘Individual’ with values ‘Ind1’ and ‘Ind2’, then selecting Group by = Infection,
Individual would give groups ‘Pre - Ind1’, ‘Pre - Ind2’, ‘Post - Ind1’ and ‘Post - Ind2’.

The chosen options need to induce at least two groups of cells. Otherwise, the tool will fail
with a relevant message.
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Figure 13.12: The default options in the dialog of the Compare Cell Clonotypes tool. Note that
"Group by" needs to contain at least one value before proceeding. This can always be set to
"Sample".

Note that category from Cell Annotations that only contain non-integer numerical data are
not supported.

• Select groups (Optional). This can be supplied to reduce the number of groups of cells in
the outputs to only those of interest, or to control the order in which the groups are shown.
For example, if the aim is to investigate the infection effect in individual 1, the ‘Pre - Ind1’
and ‘Post - Ind1’ groups can be selected. If left empty, all groups will be used.

13.5.1 Interpreting the output of Compare Cell Clonotypes

Compare Cell Clonotypes produces a report contrasting the immune repertoire properties, and
optionally, a heat map and/or table summarizing the similarity of the immune repertoires.

The report

The report contains some of the same information provided in section 13.1.1, for each group of
cells as defined by the configured options. It additionally contains:

• Sample composition summary. Information about the samples identified in groups of cells.

• Interpolated to lowest group diversity. Diversity index interpolated to the lowest number
of clonotypes observed among all groups.

• CDR3 length. Tables containing summary statistics of the distributions.

Note that diversity is not reported for groups of cells containing more than one sample.

When a group of cells has a name that is too long to be suitable for figure legends, numbers are
used in the legend, and the mapping between the numbers and the group names is listed below
each figure.

If the "Group by" option leads to more than nine groups of cells, the figures will not have
legends. The underlying information can be recovered by double-clicking on the desired figure
and switching to the table view.
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Heat map

For each pair of groups, the weighted Jaccard similarity between the two is computed. Let Xi, Yi
denote the relative frequencies of the i’th clonotype in the first and second group respectively.
The weighted Jaccard similarity is defined as:

J(X,Y ) =

∑n
i=1min(Xi, Yi)∑n
i=1max(Xi, Yi)

. (13.1)

The weighted Jaccard distance is defined as:

D(X,Y ) = 1− J(X,Y ) .

The heat map is obtained using the Jaccard distance, where groups are clustered hierarchically.

Similarity table

A table showing the Jaccard similarity (eq. 13.1) between each pair of groups.

13.6 Convert Clonotypes to Cell Annotations
The Convert Clonotypes to Cell Annotations tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Immune Repertoire ( ) | Convert Clonotypes
to Cell Annotations ( )

The tool takes a TCR Cell Clonotypes ( ) or BCR Cell Clonotypes ( ) element as input and
produces a single Cell Annotations ( ) element summarizing the clonotypes.

The output contains multiple categories that summarize the primary clonotypes for each barcode
(see section 13.2.1). For converting secondary clonotypes, run first Filter Cell Clonotypes with
‘Multiple clonotypes’ set to ‘Retain secondary’, see section 13.3 for details.

The cells can be colored by any of the available categories in a Dimensionality Reduction Plot
(see chapter 16) obtained from matched scRNA-Seq data for the same cells (see figure 13.14).

The cells in the Dimensionality Reduction Plot and those in the Cell Annotations need to
have the same sample name. Ideally, it should be ensured that these share the sample
name as a first step in the analysis pipeline, when running the Annotate Single Cell Reads
tool (see section 6.1), or when importing the Cell Clonotypes element (see section 4.3).
If this has not been done, the sample name can be updated using the Update Single Cell
Sample Name tool (see section 18.7).

The Cell Annotations ( ) element contains the Clone size for each barcode: the number of
barcodes it shares its primary clonotype with. Let us consider the following example with TCR
clonotypes, where each column represents one barcode, and the rows identify the TRA and TRB
clonotypes by name:
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B1 B2 B3
Primary TRA clonotype TRA-1 TRA-2 TRA-1
Primary TRB clonotype TRB-1 TRB-2 None
Secondary TRA clonotype TRA-2 None None
Secondary TRB clonotype TRB-2 None None

Each barcode in this example has a clone size of one, because they are not sharing the primary
TRA + TRB clonotypes with any other barcode, even though they have TRA and TRB clonotypes
in common. To obtain the clone size for only one chain at a time, run first Filter Cell Clonotypes
with ‘Chains to retain’ set accordingly, see section 13.3.

For each identified chain, the Cell Annotations ( ) element additionally contains the following
categories with information about the primary clonotype (see figure 13.13):

• productive status;

• V, D, J and C segments;

• CDR3 length;

• the CDR3 amino acid sequence;

• the number of UMIs and reads supporting the clonotype (only for single chains).

The possible identified chains are:

• chain combinations TRA + TRB and TRG + TRD for T cells;

• individual chains TRA, TRB, TRG and TRD for T cells;

• chain combinations IGH + IGK and IGH + IGL for B cells;

• individual chains IGH, IGK and IGL for B cells.
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Figure 13.13: View of Convert Clonotypes to Cell Annotations output from a TCR Cell Clonotypes,
filtered to specific V segments and where the segments are shown for the primary clonotypes and
the TRA + TRB, TRA and TRB chains. Not all barcodes have identified clonotypes for both TRA and
TRB chains.

Figure 13.14: UMAP view of scRNA-Seq data, where cells are colored by the V segment from the
TRB chain.
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14.1 Feature selection and dimensionality reduction
Several tools provide options for speeding up calculations and reducing noise by decreasing the
amount of data used. The available options are:

• Feature selection, where only highly variable genes (HVGs) are used.

• Dimensionality reduction, where data is projected into a lower dimensional space, through
either principal component analysis (PCA) for expression data, or latent semantic indexing
(LSI) for peak data.

At least one of these options must be used.

Highly variable genes (HVGs)

Not all genes are equally informative when clustering or visualizing cells. For example, house-
keeping genes, whose expression levels are approximately constant across different cell types,
are not informative for distinguishing between cell types. It is therefore often possible to get
qualitatively the same results from an analysis by only using genes whose expression levels are
highly variable across cells.

In order to use HVGs, data must first have been normalized by Normalize Single Cell Data. Use
highly variable genes is not selected by default, but may be appropriate when speed is a priority,
or when results using all genes appear unsatisfactory. The Number of highly variable genes to
use must be specified. Values in the range 1000-5000 are typically sufficient to capture most
variation from most data sets. Setting this value too low may exclude genes that are weakly
informative, such as those that have small fold changes in rare cell types.

179
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Highly variable peaks HVGs can only be used for expression data, and not for peak
data. The only exception to this is when a tool works with expression and peak data
simultaneously, and where no dimensionality reduction is applied. In this case, which
is not recommended, the same number of peaks as HVGs are chosen at random to be
"highly variable peaks".

When a tool is run, the log will contain estimates of the amount of signal and noise removed by
choosing a certain number of HVGs (figure 14.1), which may help when choosing an appropriate
value.

Figure 14.1: An example of information provided in a tool log. Here, using 1000 HVGs reduced
the total amount of variation in the data. However, the majority of the removed variation was
estimated to be noise (75.1% of the original variation) and only a small amount of signal was
lost (16.7 − 15.8 = 0.9% of the original variation). For more details on variation estimates, see
section 14.1.1.

Genes are selected to be HVGs according to the variance of their normalized values, from highest
variance to lowest variance. Genes with variance ≤ 1 are never selected, as this is consistent
with random noise - this means that the number of HVGs used in an analysis may be lower than
the number specified.

Note that using HVGs in one part of an analysis does not limit the number of genes available in
downstream steps. For example, after constructing a visualization with HVGs, it is still possible
to visualize the expressions of all genes.

Dimensionality reduction by PCA or LSI

In most circumstances it is recommended to Use dimensionality reduction as it provides a
substantial increase in speed without affecting accuracy. Exceptions might include analysis of
targeted expression data, where the expression of only a few hundred genes is measured.

Dimensionality reduction is by PCA for expression data, and LSI for peak data, using k number
of dimensions as set in the Dimensions option. When both data types are present, k PCA
components and k LSI components are used, and each cell is represented by 2 * k features.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) projects data into a lower dimensional space while preserving
as much variation as possible.

Not all PCA dimensions are equal - the first dimension contains most of the variation and each
subsequent dimension contains less of the variation than the previous one. For this reason, it
often makes little difference to results whether k is set to 50 or 500, but large differences can be
observed if too few PCA dimensions are used. Values in the range 20-50 are suitable for most
applications. If the data has been normalized by Normalize Single Cell Data, the log will contain
estimates of the amount of biological variation in the data, which can be compared to the amount
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of variation captured by the chosen number of PCA dimensions (figure 14.2). For details on how
biological variation is estimated, see section 14.1.1.

Figure 14.2: An example of information provided in a tool log. Here, using 20 PCA dimensions
captured 16.0% of variation in the data. This is comparable with the estimated amount of biological
variation in the data.

PCA is performed using an implementation of Algorithm 971 [Li et al., 2017]. This is an extremely
fast and accurate algorithm for finding the first PCA dimensions, but its accuracy decreases for
higher dimensions. For this reason, it is advised to keep the number of PCA dimensions small
compared to the number of expressed genes.

When data have been normalized by Normalize Single Cell Data it is additionally possible to
Automatically select PCA dimensions. This chooses a number of dimensions ≤ 50 that contain
the same amount of variation as the estimated biological variation. An example log is shown in
figure 14.3.

Figure 14.3: An example of information provided in a tool log when selecting PCA dimensions
automatically. Here, using 50 PCA dimensions captured 49.4% of variation in the data, which
was lower than the estimated biological (i.e. non-noise) variation in the data. At least 262 PCA
dimensions are required to capture all 68.2% of the variation estimated to be biological. However,
the estimates are upper bounds and in practice 50 dimensions is likely to be sufficient.

Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI) is often applied in natural language processing to a "document-
term" matrix, which tabulates the number of times different words (terms) are seen in different
documents. The technique returns a lower-dimensional representation of the matrix, with a
reduced number of terms. These terms are linear combinations of original terms that are often
found in the same documents.

In the context of scATAC-Seq, the peaks are terms and the cells are documents. The reduced
dimensions are therefore linear combinations of peaks that are often found in groups of cells.

We construct a "document-term" matrix from the Peak Count Matrix using a Term Frequency -
Inverse Document Frequency (TF-IDF) weighting:

Dcp = 1Xcp>0 log
N

1 + |c ∈ C : p ∈ c|
.

Here N is the number of cells, Xcp is the Peak Count Matrix element for cell c and peak p, 1Xcp>0
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is the indicator function that returns 1 if Xcp > 0 or else 0, and |c ∈ C : p ∈ c| is the number of
cells containing peak p.

LSI with k dimensions is then achieved by taking the first k-components of the U matrix returned
by singular value decomposition of D:

D = UΣVT .

To correct for the effect of sequencing depth, the U matrix is re-normalized such that each cell
is represented by a unit vector:

Uck =
1√∑
k U

2
ck

Uck .

Combining HVGs and PCA or LSI

It is possible to use HVGs and dimensionality reduction together. When this is done, HVGs are
selected and then dimensionality reduction is run only on the HVGs. Note that, because using
HVGs already removes a lot of noise, the log may show that even a relatively large number
of Dimensions is insufficient to capture all the estimated biological variation. It may be worth
experimenting with increasing the number of dimensions slightly to check whether this has an
impact on the results.

Using both expression and peak data

When feature selection and/or dimensionality reduction is applied to both an expression and
peak matrix, only cells that are in common to both matrices are used.

It is possible to run only feature selection without dimensionality reduction. To ensure that
the two data types contribute equally to the downstream analysis, the number of peaks is also
reduced to the same number as the genes. Since no corresponding method for feature selection
exists for peak data, the peaks are chosen randomly.

When dimensionality reduction is applied, all peaks are used, regardless of the HVGs settings,
as the dimensionality reduction ensures equal contribution of both data types.

14.1.1 Calculation of estimated biological variation

Genes that have been normalized by Normalize Single Cell Data have an expected variance
of ∼ 1 from random noise. In reality many genes have larger variance because they do not
perfectly fit the model used in normalization. This is expected because the model only expects
expression to vary due to sequencing depth and (optionally) batch effects - it does not account
for expressions differing across different cell types or treatments.

We define the ‘estimated biological variation’ vbio in a normalized sample to be the fraction of
the total variance that is above the expected variance due to random noise for each gene

vbio =

∑
g max(Var(zg)− 1, 0)∑

g(Var(zg))
.

Here, zg are the normalized expressions of gene g. Note that this estimate assumes that all
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variation remaining after normalization is of ‘biological’ origin. This is unlikely in practice, and the
estimate will often be too high.
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15.1 Cluster Single Cell Data
Cluster Single Cell Data uses a graph-based clustering to automatically cluster cells. Typically
the aim is to recover clusters that describe cells of different types or with different behavior.

The tool takes an Expression Matrix ( ) / ( ), or a Peak Count Matrix ( ), or both types of
matrix as input, and produces a Cell Clusters ( ) result. Note that when both types of matrices
are provided, only cells that are in common to both matrices are used.

It can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Cell Annotation ( ) | Cluster Single Cell Data
( )

The tool offers options to run dimensionality reduction or feature selection prior to clustering. For
details on these options, please see section 14.1. The following additional options are available:

• Distance measure. The algorithm starts from a k-nearest neighbor graph, and the distance
measure is used to find the ‘nearest’ neighbors. The ‘1-Pearson correlation’ distance is
less sensitive to changes in the scale of expression between cells than Euclidean distance
(for example, if one cell has exactly twice the expression of another for each gene, the ‘1 -
Pearson correlation’ distance is 0 while the Euclidean distance may be very large) and may
be better at finding more distant neighbors. Conversely, Euclidean distance may provide
higher resolution for distinguishing similar cell types.

• Neighborhood size. The number of cells ‘k’ used in the k-nearest neighbor graph. This
determines the granularity of the visualization. Smaller values may be better at recovering
small clusters, but may also lead to larger clusters becoming fragmented.
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• Use fixed resolution The resolution controls the coarseness of the clustering, with smaller
values of the resolution leading to fewer clusters. When this option is disabled, results
for several different resolutions from 0.1 to 1.5 are returned. Only when none of these
resolutions appear appropriate would a fixed resolution typically be required.

• Resolution The fixed resolution to use.

The result of clustering is a Cell Clusters ( ) element containing clusters at different resolutions.
It is easiest to view these in a Dimensionality Reduction Plot ( ).

Generally speaking, a good clustering will have distinct clusters for each large clump of cells that
appears to form a cluster by eye in the Dimensionality Reduction Plot. If this is not the case, the
resolution may be too low (as in figure 15.1, compared with figure 15.2). Unfortunately, it can
be hard to tell when the resolution is too high, but generally one or more of the clusterings at a
default resolution will be suitable for downstream analysis.

Figure 15.1: Clustering with too low resolution. Clusters that are distinct by eye are given the same
color. Examples include the three dark blue clusters at the top-right corner of the plot, and the two
turquoise clusters at x=-20. Data is from MacParland et al., 2018.

As the aim of clustering is usually to have clusters that correspond to different cell types, it is
possible, from the Dimensionality Reduction Plot, to redraw the boundaries between clusters, to
add new clusters, and to rename clusters. These changes might be based on insights from other
sources of information such as:

• Predicted cell types from the Predict Cell Types tool.

• The expression of known marker genes for a cell type.

• Marker genes that have been detected from the clusters by Differential Expression for
Single Cell.

15.1.1 The Cluster Single Cell Data algorithm

Cluster Single Cell Data is a graph-based clustering method. It proceeds in three phases:
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Figure 15.2: A higher resolution clustering of the same data as in figure 15.1. Each cluster that
seems distinct by eye is now given its own color. The resolution is no longer too low. It can be
difficult to determine whether the resolution is too high.

1. Construction of a k-nearest neighbor graph (kNN), where each cell is a node in the graph
with edges to its k nearest neighbors.

2. Construction of a Shared Nearest Neighbor (SNN) graph from the kNN graph using the
method of Xu and Su, 2015. Briefly, in the SNN graph each cell is again a node, but
two cells are only connected by an edge if they share a nearest neighbor in the kNN
graph. Neighbors of each cell in the kNN graph are ranked from 1 (the same cell, because
each cell is its own closest neighbor) to k (the most distant neighbor). Edges in the SNN
graph are weighted according to the best of the average ranks of their shared neighbors.
Edges connecting cells that share close nearest neighbors are weighted higher than edges
connecting cells that only share distant nearest neighbors.

3. Application of Leiden community detection to the weighted SNN graph [Traag et al., 2019].

The Leiden community detection algorithm has two hyperparameters. These are set as follows:

• Iterations: 3

• Randomness: θ = 0.01

15.2 Create Heat Map for Cell Abundance
Create Heat Map for Cell Abundance compares two groupings of the same cells. It outputs a
heat map showing the cell abundance for the two groupings. The tool is useful for matching
automated clusters with predicted cell types or for comparing analysis that has been run in third
party tools with the results obtained using the CLC Single Cell Analysis Module.

The tool produces a Heat Map ( ) of cell abundance. It is often most natural to run the tool
from a Dimensionality Reduction Plot by right-clicking on the plot, see section 17 for details.
However, it can also be found in the Toolbox here:
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Toolbox | Single Cell Analysis ( ) | Cell Annotation ( ) | Create Heat Map for Cell
Abundance ( )

The tool requires at least one Cell Clusters ( ) and/or Cell Annotations ( ). A number of
options are available to choose and order the groups:

• Group by (row). Select which category should be displayed as rows.

• Select groups (row) (Optional). This can be supplied to reduce the groups in the plot to
only those of interest, or to control their order.

• Group by (column). Select which category should be displayed as columns.

• Select groups (column) (Optional). This can be supplied to reduce the groups in the plot to
only those of interest, or to control their order.

While numerical categories can be selected from Cell Annotations, it is often most relevant to
choose discrete traits.

Each colored rectangle in the heat map represents the number of cells found in both groups.
Three options exist for scaling the numbers:

• By all. All entries will sum to 100%.

• Per row. All entries in each row will sum to 100%.

• Per column. All entries in each column will sum to 100%.

When selecting "By all", the most abundant pairs of groups will be most noticeable, whereas
"Per row / column" highlights how well different groupings match and shows the composition of
one of the groupings as a function of the other.

15.2.1 Interpreting the output of Create Heat Map for Cell Abundance

Figure 15.3 is an example of a plot showing how a third party tool’s cell type annotations
(columns) compare to the Leiden clusters with resolution=0.5 (rows) scaled using the "Per
column" option. There seems to be a good concordance between the groups: there is mostly
only one red rectangle per column.

Reordering the cell types can improve the visualization and make it easier to interpret the results
(see figure 15.4). The red diagonal makes it clear that only minor differences exist between the
two groupings.

Creating a new heat map using the "By all" scaling option shows whether most cells fall into the
expected categories. Figure 15.5 illustrates how frequent each group combination is, with "15 -
CD4 Naive T cells" and "6 - CD14 Mono cells" being most abundant.

The heat maps of cell abundance indicate that "CD14 Mono cells" are split into four clusters, 2,
6, 12 and 14. These four clusters are adjacent in a UMAP plot (see figure 15.6), suggesting that
they represent sub-types of "CD14 Mono cells".
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Figure 15.3: A heat map of cell type abundance showing Leiden clusters with resolution=0.5
calculated using the CLC Single Cell Analysis Module and compared to the cell types predicted
by Seurat, using a tutorial data set (https://satijalab.org/seurat/archive/v3.2/
immune_alignment.html). Hovering over the rectangle reveals the abundance of the selected
combination, also indicated by the color.

Figure 15.4: The heat map from figure 15.3 has been rearranged for easier interpretation by
changing the order of the Seurat cell types.

https://satijalab.org/seurat/archive/v3.2/immune_alignment.html
https://satijalab.org/seurat/archive/v3.2/immune_alignment.html
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Figure 15.5: The heat map from figure 15.4 with all abundance entries summing up to 100. The
highlighted clusters, 12 and 14, are annotated as CD14 Mono cells and have a relatively high
abundance.

Figure 15.6: UMAP of the same data as in figure 15.5. The blue, green, lilac, and brown cells in
the lower left corner correspond to clusters 2, 6, 12 and 14 respectively. Highlighted cells (larger
points) are also "CD14 Mono cells".
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15.3 Create Cell Annotations from Hashtags
Create Cell Annotations from Hashtags can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Cell Annotation ( ) | Create Cell Annotations
from Hashtags ( )

The tool takes as input one or more sequence lists ( ) of reads that have been annotated with
cell barcodes and hashtags using Annotate Single Cell Reads.

Using a file that translates hashtags to annotations, it produces a Cell Annotations ( ) element
containing, for each cell, the corresponding annotations according to the hashtags found on the
reads. Note that when the hashtag represents the sample, Update Single Cell Sample Name can
be used with the output produced by this tool, see section 18.7.

A number of options are available (figure 15.7).

Figure 15.7: The options in the dialog of the Create Cell Annotations from Hashtags tool.

Under ‘Annotations’:

• Data file. A single file in .csv, .tsv or .xlsx format.

• Hashtag column. The name of the column containing the hashtags.

• Maximum mismatches. When matching hashtags from reads with those from the data file,
this many sequence mismatches are allowed. Note that since the hashtags have a fixed
length, insertions and deletions end up counting for 2 mismatches. Hashtags are matched
such that there are as few mismatches as possible.
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• Annotation columns. The names of the columns to output as cell annotations.

Under ‘Output categories’, the categories and content of the output Cell Annotations can be
configured:

• One category for each annotation column. If selected, one category will be added for
each selected annotation column. One hashtag is used for each cell. If a cell has multiple
hashtags:

– Use hashtag with largest count. The hashtag with the largest ‘Count’ (see below) is
used.

– Discard cell. The cell is not added to the output.

The annotation for a cell will be the value found in the annotation column for the row with
the hashtag of the cell.

• One category for each value from annotation columns. If selected, one category will be
added for all unique values found in each selected annotation column. E.g., if a column
name is "HTO" with content "A", "B" and "C", there will be three categories "HTO: A",
"HTO: B" and "HTO: C". For each cell, all identified hashtags are used. The annotation for
a cell is configured as follows:

– Yes/No. ‘Yes’ if the cell has reads with the corresponding hashtag, ‘No’ otherwise.

– Count. The number of reads with the corresponding hashtag. Reads are collapsed and
counted as one when they are for the same cell and have the same UMI and same
hashtag.

– Percentage. The ‘Count’ transformed to percentage.
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16.1 UMAP for Single Cell
Uniform Manifold Approximation and Projection, UMAP, is a general purpose algorithm for
visualizing high dimensional data in 2D or 3D [McInnes et al., 2018]. In the CLC Single Cell
Analysis Module, it is one of two ways of constructing a Dimensionality Reduction Plot ( ), with
the other being tSNE. The choice between tSNE and UMAP is purely visual - it has no effect on
downstream analysis. Therefore it is recommended to use the tool that produces the visualization
you prefer.

The UMAP for Single Cell tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Dimensionality Reduction ( ) | UMAP for
Single Cell ( )

The tool takes an Expression Matrix ( ) / ( ), or a Peak Count Matrix ( ), or both types
of matrix as input. Note that when both types of matrices are provided, only cells that are in
common to both matrices are used.

UMAP for Single Cell offers options to run dimensionality reduction or feature selection prior
to the UMAP algorithm. For details on these options, please see section 14.1. The following
additional options are available:

• Produce 3D plot. Perform a second UMAP calculation in three dimensions. As this
involves a full re-calculation of UMAP in a higher dimension, the runtime is approxi-
mately doubled when this option is selected. Note that the 3D plot has special system
requirements, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=System_requirements.html.

• Distance measure. UMAP works on a k-nearest neighbor graph, and the distance measure
is used to find the ‘nearest’ neighbors. The ‘1-Pearson correlation’ distance is less
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sensitive to changes in the scale of expression between cells than Euclidean distance (for
example, if one cell has exactly twice the expression of another for each gene, the ‘1 -
Pearson correlation’ distance is 0 while the Euclidean distance may be very large) and may
be better at finding more distant neighbors. Conversely, Euclidean distance may provide
higher resolution for distinguishing similar cell types.

• Neighborhood size. The number of cells ‘k’ used in the k-nearest neighbor graph. This
determines the granularity of the visualization. Smaller values will recover more local
structure, but will lose the ‘big picture’. Larger values may average out fine structure.

• Random seed. The algorithm contains a random component determined by the seed. This
means that each value of the seed leads to a slightly different visualization.

• Minimum distance. The effective minimum distance between embedded points. Smaller
values result in tighter clusters.

• Spread. The effective scale of embedded points. Smaller values result in tighter clusters.

• Epochs. The algorithm works by repeating the same steps a predefined number of times.
There is, unfortunately, no good rule for determining how many iterations are appropriate.
More iterations do no harm, but too few iterations may lead to clusters of cells failing to
separate. Doubling the number of iterations approximately doubles the runtime.

An example output is shown in figure 16.1.

Figure 16.1: A UMAP visualization of data from MacParland et al., 2018.

Tuning the visualization

Although reducing Spread and Minimum distance give tighter clusters, they do so in different
ways. Therefore it can be useful to try changing both parameters. An example of this is given in
figures 16.2-16.4.
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Figure 16.2: UMAP with Minimum distance = 0.3 and Spread = 1. This is the same plot as in
figure 16.1, but with clusters overlaid.

Figure 16.3: UMAP with Minimum distance = 1 and Spread = 1. The overall structure of the clusters
is the same as in figure 16.2, but the points are more separated.
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Figure 16.4: UMAP with Minimum distance = 0.3 and Spread = 10. Both points and clusters are
more separated than in figure 16.2. Whether this is desirable is likely to depend on the application.
For example, it is easier to see that the dark blue, light blue and orange clusters are different cell
types, which may help with cell type annotation, but their proximity in the other figures may have
indicated a shared developmental lineage, which it is not possible to see here. Note that other
clusters, such as the red cluster, are now also split in two, compared to the other figures.
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16.2 tSNE for Single Cell
t-Distributed Stochastic Neighbor Embedding, tSNE, is a general purpose algorithm for visualizing
high dimensional data in 2D or 3D [Maaten and Hinton, 2008]. In the CLC Single Cell Analysis
Module, it is one of two ways of constructing a Dimensionality Reduction Plot ( ), with the other
being UMAP. The choice between tSNE and UMAP is purely visual - it has no effect on downstream
analysis. Therefore it is recommended to use the tool that produces the visualization you prefer.

The tSNE for Single Cell tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Dimensionality Reduction ( ) | tSNE for Single
Cell ( )

The tool takes an Expression Matrix ( ) / ( ), or a Peak Count Matrix ( ), or both types
of matrix as input. Note that when both types of matrices are provided, only cells that are in
common to both matrices are used.

tSNE for Single Cell offers options to run dimensionality reduction or feature selection prior to the
tSNE algorithm. For details on these options, please see section 14.1. The following additional
options are available:

• Produce 3D plot. Perform a second tSNE calculation in three dimensions. As this
involves a full re-calculation of tSNE in a higher dimension, the runtime is approxi-
mately doubled when this option is selected. Note that the 3D plot has special system
requirements, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=System_requirements.html.

• Random seed. The algorithm contains a random component determined by the seed. This
means that each value of the seed leads to a slightly different visualization.

• Iterations. The algorithm works by repeating the same steps a predefined number of times.
There is, unfortunately, no good rule for determining how many iterations are appropriate.
More iterations do no harm, but too few iterations may lead to clusters of cells failing to
separate. Doubling the number of iterations approximately doubles the runtime.

• Automatically select perplexity. automatically chooses a value for the perplexity based
on the number of cells, n. This is set to (n − 2)/3 for n < 92 (the highest value allowed
by the data), 30 for 92 ≤ n ≤ 3000 (a commonly used value in the literature), n/100 from
3000 ≤ n ≤ 10000 (suggested by Kobak and Berens, 2019), and 100 for n ≥ 10000.

• Perplexity. The perplexity roughly corresponds to the number of close neighbors (in
expression space) that each cell has. Generally speaking, smaller values of the complexity
lead to a tendency to form more clusters.

An example output is shown in figure 16.5. When interpreting tSNE plots, it is important to be
aware that the tightness of clusters and distances between them may not reflect the actual intra-
and inter-cluster similarities. Some examples of this are provided by Wattenberg et al., 2016.

Implementation details Barnes-Hut tSNE is implemented [Van Der Maaten, 2014]. If dimen-
sionality reduction has been selected, the initial guess at the optimal layout is seeded using
PCA and/or LSI (plus a small amount of random variation), and otherwise is uniformly random

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=System_requirements.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=System_requirements.html
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Figure 16.5: A tSNE visualization of data from MacParland et al., 2018.

in the range 0 - 0.0001. The use of dimensionality reduction is recommended, because several
authors have reported improved conservation of global structure in tSNE visualizations when PCA
initialization is used.

tSNE has several hyperparameters, which are set as follows:

Early exaggeration factor: α = 12

Learning rate: ν = max(200, n/α) where n is the number of cells

Iterations for early exaggeration: 250

Momentum during early exaggeration: 0.5

Momentum for subsequent iterations: 0.8
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CLC Single Cell Analysis Module can produce three types of plots, where each cell or barcode is
represented as one point in a low-dimensionality representation:

• Dimensionality Reduction Plot ( ), see chapter 16.

• Phase Portrait Plot ( ), see section 10.4.

• Spatial Transcriptomics Plot ( ), see section 11.1.

The title of a Dimensionality Reduction Plot or Spatial Transcriptomics Plot is the same as the
name of the plot element, and it can be updated by renaming the element. The title of a Phase
Portrait Plot is the name of the displayed gene.

Using such a low-dimensional plot:

• different aspects of the data can be visualized;

• cells can be manually annotated;

198



CHAPTER 17. SINGLE CELL LOW-DIMENSIONAL PLOTS FUNCTIONALITY 199

• various tools can be started using the information selected in the plot.

This chapter describes this functionality, showcasing specific aspects.

Note that it is not possible to edit clusters or launch tools using Phase Portrait Plots.

17.1 Manual annotation
This section showcases the different functionalities available from a low-dimensional plot using
a UMAP plot of an Expression Matrix ( ) generated from data from MacParland et al., 2018.

The cells in a plot can be colored using different sources of information, such as Cell Clusters,
Cell Annotations, features expression and sample of origin. To enable this coloring, the relevant
elements are associated with the plot by dragging and dropping them in the corresponding groups
of the Side Panel (see figure 17.1).

Figure 17.1: Cells are colored by clusters produced by Cluster Single Cell Data (see section 15.1).
The category ‘Leiden (resolution=0.5)’ was chosen in the Side Panel Clusters group.

To visualize the same low-dimensional plot using different sources of information for coloring, the
plot can be opened multiple times and the windows can be rearranged by dragging and dropping
(see figure 17.2).

On mouse hover, a tooltip shows summaries for the nearby cells (see figure 17.3). The tooltip can
be disabled by unchecking ‘Show tooltip’ in the ‘Coloring and highlighting’ group at the bottom
of the Side Panel. The same type of summary can be obtained for a group of selected cells by
choosing ‘Show Information for Selected’ from the plot right-click menu (see figure 17.4).

On right-click on the plot, a series of options are available for launching tools or performing
various actions on selected cells (see figure 17.4).

Selecting cells

Cells can be selected in multiple ways:
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Figure 17.2: The same UMAP plot is opened two times, and cells are colored by the automated
clusters with ‘Leiden (resolution=1.0)’ (top) and the predicted cell types (bottom) produced by
Predict Cell Types (see section 8.2) using the human pre-trained cell classifier (see chapter 2). The
label for the selected cell types is added on the plot by choosing ‘Show labels from: Clusters’ in the
‘Coloring and highlighting’ Side Panel group.

• Cells can be highlighted using the Side Panel, for example by choosing one or multiple
clusters, using specific ranges for cell annotations (see figure 17.11) or feature expression
(see figure 17.13), or choosing specific samples. Once the cells are highlighted, they
can be selected by choosing ‘Selected Highlighted’ from the plot right-click menu (see
figure 17.4).

• Cells can be selected using the lasso tool (see figure 17.5).

• A larger amount of cells can be selected by making a small selection and choosing ‘Invert
Selection’ from the plot right-click menu (see figure 17.4).
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Figure 17.3: When the mouse hovers over the plot, a tooltip is displayed summarizing the nearby
cells, containing information from the elements associated to the plot, and the feature expression
for any selected features.

Figure 17.4: Available options in the plot right-click menu.

Working with clusters and annotations

Selected cells can be reassigned to existing clusters by choosing ‘Add to Cluster’ or added to a
completely new cluster by choosing ‘Add to New Cluster’ (see figure 17.6) from the plot right-click
menu (see figure 17.4), either as a free text or a cell type from the QIAGEN Cell Ontology
(see section 8.1). When reassigning to existing clusters, the clusters are listed in the same order
as in the Side Panel (see figure 17.8).

An existing cluster can be renamed by choosing ‘Rename Cluster’ in the cluster edit menu (see
figure 17.9). A dialog similar to that in figure 17.6 opens, where the cluster can be renamed
either using free text or a cell type from the QIAGEN Cell Ontology. When a cluster represents an
ontology cell type, details about it (as those shown in figure 17.7) can be obtained by choosing
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Figure 17.5: Cells can be selected using the lasso tool.

Figure 17.6: Cells can be added to a new cluster defined either by using free text or a cell type
from the QIAGEN Cell Ontology by choosing ‘QIAGEN cell type’. Clicking on the browse button (’...’)
opens up the ontology browser (see figure 17.7).

‘Show in QIAGEN Cell Ontology’ (see figure 17.9).

Any of the changes made using the above actions can be undone using the ‘Undo’ button. When
clusters are changed, the plot name is marked with an ‘*’ indicating that it contains an element
that needs to be saved. By clicking ‘Save’, a new Cell Clusters element can be created.

The coloring of a cluster can be changed by clicking on the color box next to its name in the
Side Panel. The newly chosen color can be saved using the View Settings, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Side_Panel_view_settings.

html. Note that when the plot is closed and opened again, the default color is used, and to
recover the custom color, the previously saved view settings need be re-applied to the plot.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Side_Panel_view_settings.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Side_Panel_view_settings.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Side_Panel_view_settings.html
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Figure 17.7: View of the QIAGEN Cell Ontology, showing details for ‘hepatic stellate cells’. The ‘Cell
type’ text field can be used to quickly identify the desired cell type. Only cell types specific to a
certain tissue can be shown by filling in ‘Tissue’. By using ‘Free text’, all cell types not containing the
given text anywhere in their details are removed from the ontology structure shown at the bottom.

Cells can be also colored using information from cell annotations (see figures 17.10 and 17.11).

Visualizing expressions

Visualizing the expression of marker genes and selecting cells that express a set of marker genes
above a specific value can be used to manually annotate the cell types. The plot can show the
full expression of a specific gene across all cells using a gradient (see figure 17.12) or using one
color for the cells with one or multiple gene expressions in a specific interval (see figure 17.13).

Multiple genes can be selected by:

• Adding them manually by choosing ‘Add to Selected Features’, see figure 17.12.

• Loading them from a file (see figure 17.14). The file should contain one gene name per
line (see figure 17.15).

• Selecting them from other views showing feature expression, see below.

Selecting features in other views

Features can be selected from various elements showing their expression, and this is done
in a synchronized manner, such that all opened elements showcasing feature expression will
highlight the corresponding features, if available. This can be done from an Expression Matrix
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Figure 17.8: Setting the order of clusters in the Side Panel so the clusters with most cells are listed
first.

Figure 17.9: The available options for editing a single cluster from the Side Panel. ‘Show in QIAGEN
Cell Ontology’ is grayed out because the corresponding cluster is not part of the ontology.

(see figure 17.16), a Dot Plot (see figure 17.17), a Heat Map (see figure 17.18), or a Violin Plot
(see figure 17.19).

The UMAP plot, Dot Plot, Heat Map, and Violin Plot all show that ‘ACTA2’, ‘COL1A1’, ‘TAGLN’,
‘COL1A2’, ‘COL3A1’, ‘SPARC’, ‘RBP1’, ‘DCN’, ‘MYL9’ are highly expressed in cluster 10. These
genes were identified as markers for hepatic stellate cells [MacParland et al., 2018] and cluster
10 is confirmed to contain hepatic stellate cells by the Predict Cell Types tool (see figure 17.11).
This can be further confirmed by investigating a Cell Abundance Heat Map (see section 15.2), as
shown in figure 17.20.

Once the cells co-expressing specific markers are highlighted, a new cluster with the correspond-
ing cell type can be created, as described above.
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Figure 17.10: Cells are colored by the number of reads from the annotation produced by QC for
Single Cell (see section 7.2). What information the cells are colored by can be chosen in the
‘Coloring and highlighting’ group at the bottom of the Side Panel.

Figure 17.11: Cells are colored by the probability of having the type ‘hepatic stellate cells’ from
the annotation produced by Predict Cell Types (see section 8.2) using the human pre-trained cell
classifier (see chapter 2). Cells with a probability of at least 0.3 are highlighted. The highlight
interval is inclusive.
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Figure 17.12: Cells are colored by the expression of ‘ACTA2’. The gene is selected by typing its
name in the search box under the ‘Expression data’ group in the Side Panel. The relative coloring
of the values can be changed by dragging the two knobs on the white slider above. ‘ACTA2’ can be
added to ‘Selected features’ (see figure 17.13).

Figure 17.13: Cells that have an expression of at least 5 for ‘ACTA2’ and 1 for ‘COL1A1’ are
colored in the plot. Different options are available for manipulating the cells expressing a particular
feature. Selected cells can be required to express both genes, or just one of them, by choosing
‘Selected in all (intersection)’ or ‘Selected in any (union)’ at the bottom of the Side Panel. Note that
the expression range is inclusive: setting the minimum expression to 0 will include the cells not
expressing the gene. Choosing the interval [0, 0] will highlight only the cells that do not express the
gene.
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Figure 17.14: Side Panel options for ‘Selected features’.

Figure 17.15: Dialog for loading feature names from a file.

Figure 17.16: Right-click menu for selecting genes from the Expression Statistics Table view of an
Expression Matrix to be synchronized with other views.
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Figure 17.17: Right-click menu for selecting genes from a Dot Plot to be synchronized with other
views.

Figure 17.18: Right-click menu for selecting genes from a Heat Map to be synchronized with other
views.
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Figure 17.19: Right-click menu for selecting genes from a Violin Plot to be synchronized with other
views.

Figure 17.20: Cell Abundance Heat Map comparing the ‘Leiden (resolution=0.5)’ clusters to the
cell types produced by Predict Cell Types. Hovering over a rectangle reveals the abundance of the
selected combination.
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17.2 Visualizing different types of matrices
The low-dimensional plots can show information stored in multiple types of matrices. To enable
this, the relevant elements are associated with the plot by dragging and dropping them in the
corresponding groups of the Side Panel:

• Expression Matrix ( ): ‘Expression data’ group;

• Expression Matrix with spliced and unspliced counts ( ): ‘Expression data’ group;

• Peak Count Matrix ( ): ‘Peak count matrix’ group;

• Velocity Matrix ( ): ‘Velocity matrix’ group.

Note that only one element at a time can be associated with each group, but all groups can have
associations concurrently.

The Expression Matrix with spliced and unspliced counts ( ) shares the same group as the
Expression Matrix ( ) because it is an extension which additionally contains separate information
about the spliced and unspliced counts for each cell and gene.

The Manual Annotation section showcases how the expression of genes found in an Expression
Matrix ( ) can be used for coloring and selecting cells (see section 17.1). The remaining
matrices can display:

• Multiple types of expression values for the same feature (figure 17.21);

• Multiple types of features (figure 17.22);

• Other type of information (figure 17.23);

all of which can be chosen from a drop down menu.

Figure 17.21: The options available in the ‘Expression data’ group for an Expression Matrix with
spliced and unspliced counts.

Figure 17.22: The options available in the ‘Peak count matrix’ group for a Peak Count Matrix.
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Figure 17.23: The options available in the ‘Velocity matrix’ group for a Velocity Matrix.

The same functionality for coloring and selecting cells available for expression data, as detailed
in the Manual Annotation section, is also available for all the options in the drop down menus.

The transition probabilities present in the Velocity Matrix (figure 17.23) are the only options that
are cell-based and not feature-based. To color cells after such probabilities, one cell can be
selected in the plot using the lasso tool (see figure 17.5) and the option to show the probabilities
can be chosen from the plot right-click menu (figure 17.24 and 17.25).

Figure 17.24: Showing transition probabilities from the plot right-click menu. Options are available
when just one cell is selected.

The ‘Incoming probability’ colors cells that have a non-zero probability of transitioning towards
the selected cell by that probability. The ‘Outgoing probability’ colors cells that the selected cell
has a non-zero probability of transitioning towards by that probability. Note that probabilities can
be negative, indicating that the cell is transitioning in the opposite direction.

When a Velocity Matrix is associated with a Dimensionality Reduction Plot, the ‘Show arrows’
option can be used to display the projected velocities at cellular level. Each arrow is obtained
from the cell’s ‘Outgoing probabilities’ and summarizes them into a projected direction for the
cell and its speed of movement. The arrows can reveal differences between near-terminal cells,
where arrows are short, and transient cells, where arrows are longer (figure 17.26).
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Figure 17.25: Coloring by incoming transition probabilities from a selected cell

Figure 17.26: UMAP plot of the pancreas data set [Bastidas-Ponce et al., 2019] built-in scVelo
[Bergen et al., 2020]. Arrows show the direction and speed of movement of an individual cell. The
real time cells experience as they differentiate is approximated by the latent time, shown here in
the 0 (black) to 1 (yellow) range.

17.3 Create Subset
By choosing ‘Create Subset’ from the low-dimensional plot right-click menu (see figure 17.4), new
matrices and associated elements, as relevant, can be created, containing only the corresponding
selected cells (see figure 17.27)
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Figure 17.27: Dialog for Create Subset when started from a Dimensionality Reduction Plot. The
Output options allow choosing which of the elements that are associated with the plot the subset
will be created for.

17.4 Extract to Table
By choosing ‘Extract to Table’ from the low-dimensional plot right-click menu (see figure 17.4),
a table can be created, with the relevant information for the corresponding selected cells (see
figures 17.28 and 17.29).

Figure 17.28: Dialog for Extract to Table. The Output options allow choosing which available
information will be included in the resulting plot.
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Figure 17.29: The output of Extract to Table. Only the ‘Sample’, ‘Barcode’, ‘Leiden (resolution=0.5)’
cluster, probability of ‘cardiomyocytes’, and expression of ‘Myl2’ columns are shown, as selected in
the Side Panel.

17.5 Launching of Create Expression Plot
By choosing ‘Create Expression Plot’ from the low-dimensional plot right-click menu (see fig-
ure 17.4), the tool Create Expression Plot can be started (see section 9.2). The dialog is
automatically filled in with the relevant information from the plot (see figure 17.30).
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Figure 17.30: Dialog for Create Expression Plot (see section 9.2) when started from the plot. The
clusters and annotations that are associated with the plot are automatically filled in. The selected
cluster is automatically added to ‘Group by’.

17.6 Launching of Create Heat Map for Cell Abundance
By choosing ‘Create Heat Map for Cell Abundance’ from the low-dimensional plot right-click menu
(see figure 17.4), the tool Create Heat Map for Cell Abundance can be started (see section 15.2).
The dialog is automatically filled in with the relevant information from the plot (see figure 17.31).
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Figure 17.31: Dialog for Create Heat Map for Cell Abundance (see section section 15.2) when
started from the plot. The clusters and annotations that are associated with the plot are
automatically filled in. Note that ‘Group by’ and ‘Scaling’ need to be configured to obtain the
desired analysis.

17.7 Launching of Differential Accessibility for Single Cell
By choosing ‘Differential Accessibility for Single Cell’ from the low-dimensional plot right-click
menu (see figure 17.4), the tool Differential Accessibility for Single Cell can be started (see sec-
tion 12.3). The dialog is automatically filled in with the relevant information from the plot (see
figure 17.32).
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Figure 17.32: Dialog for Differential Accessibility for Single Cell (see section 12.3) when started
from the plot. The clusters and annotations that are associated with the plot are automatically filled
in. The selected clusters are automatically added to ‘Select groups’.

17.8 Launching of Differential Expression for Single Cell
By choosing ‘Differential Expression for Single Cell’ from the low-dimensional plot right-click menu
(see figure 17.4), the tool Differential Expression for Single Cell can be started (see section 9.1).
The dialog is automatically filled in with the relevant information from the plot (see figure 17.33).
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Figure 17.33: Dialog for Differential Expression for Single Cell (see section 9.1) when started from
the plot. The clusters and annotations that are associated with the plot are automatically filled in.
The selected clusters are automatically added to ‘Select groups’.

17.9 Launching of Differential Velocity for Single Cell
By choosing ‘Differential Velocity for Single Cell’ from the low-dimensional plot right-click menu
(see figure 17.4), the tool Differential Velocity for Single Cell can be started (see section 10.2).
The dialog is automatically filled in with the relevant information from the plot (see figure 17.34).

Figure 17.34: Dialog for Differential Velocity for Single Cell (see section 10.2) when started from
the plot. The clusters and annotations that are associated with the plot are automatically filled in.
The selected clusters are automatically added to ‘Select groups’.
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17.10 Launching of Score Velocity Genes
By choosing ‘Score Velocity Genes’ from the low-dimensional plot right-click menu (see fig-
ure 17.4), the tool Score Velocity Genes can be started (see section 10.3). The dialog is
automatically filled in with the relevant information from the plot (see figure 17.35).

Figure 17.35: Dialog for Score Velocity Genes (see section 10.3) when started from the plot. The
clusters and annotations that are associated with the plot are automatically filled in. The selected
clusters are automatically added to ‘Select groups’.
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18.1 Combine Cell Annotations
Combine Cell Annotations can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Utility Tools ( ) | Combine Cell Annotations
( )

The tool takes as input multiple Cell Annotations ( ) and outputs a single Cell Annotations
( ) element. This can be useful to reduce the number of elements needed to describe a set of
cells.

The combining is very flexible. For example, it supports:

• Different pieces of information for the same cells. An example could be QC metrics from
QC for Single Cell with cell type probabilities from Predict Cell Types.

• The same pieces of information from different cells.

• Different pieces of information from different cells.

Cells are considered to be the same if they have the same sample and barcode. Note that if
two Cell Annotations describe the same cell with contradictory information in the same category,
then combining will fail with a warning.

220
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18.2 Update Cell Annotations
The Update Cell Annotations tool takes one Cell Annotations ( ) element as input and outputs
a new Cell Annotations ( ) element containing updated categories and/or annotations.

The tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Utility Tools ( ) | Update Cell Annotations ( )

In the first wizard step ‘Update categories’, the following options can be adjusted:

• Remove categories. The selected categories are removed.

• Remove all empty categories. Categories without any cell annotations are removed.
Categories are also removed if empty after removal of cell annotations (see below).

• Rename categories. One or more categories are renamed. The Add button can be used to
add additional categories to be renamed. Note that multiple categories cannot be renamed
to the same name.

• Rename all categories. All categories are renamed according to the given pattern. This
can be used for both prepending and appending to the name. E.g., if set to ‘MyPrefix
{categoryName} MySuffix’, a category ‘MyCategory’ will be renamed to ‘MyPrefix MyCategory
MySuffix’. This is done after the changes specified by Rename categories.

In the next wizard step ‘Update annotations’, annotations containing text can be updated.
Boolean (yes/no) and numeric annotations cannot be updated. The following options can be
adjusted:

• Update annotations for. The updates can be applied to:

– No categories. Skip updating cell annotations.

– All categories. Update the cell annotations for all categories.

– Selected category. Update the cell annotations only for the category selected in
Update annotations for category.

• Remove annotations. The selected annotations are removed.

• Change annotations. One or more annotations are changed. The Add button can be used
to add additional annotations to be changed. Note that a annotation may be changed to an
existing annotation and multiple annotations may be changed to the same annotation.

The options above can be mixed and matched to obtain the desired output. For example, a
category can be first renamed and then the annotations it contains can be updated.

The Update Cell Annotations tool can also be started from the different views of the Cell
Annotations ( ) element, with dialogs automatically filled in with relevant selections:

• From the annotations table view ( ):

– annotations can be removed or changed from the right-click menu. Multiple rows can
be selected before using the right-click menu.
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– A category can be removed or renamed using the Remove and Rename buttons from
the Side Panel.

• From the cell-level view ( ), the category over which the mouse hovers can be removed or
renamed from the right-click menu.

18.3 Convert Metadata to Cell Annotations
Metadata is often present at both the sample and cell level. However, it is always possible
to convert sample level metadata into cell level metadata. For example, the knowledge that a
sample comes from ‘Lab A’ can be captured by annotating the entire sample with ‘Lab A’, or
alternatively by annotating all the cells in the sample with ‘Lab A’.

For simplicity, most tools in the CLC Single Cell Analysis Module only accept cell level meta-
data. Convert Metadata to Cell Annotations is provided to easily transform sample level
metadata in the form of Metadata Tables (see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Metadata.html for more details) into cell level meta-
data in the form of Cell Annotations. Convert Metadata to Cell Annotations can be found in the
Toolbox here:

Toolbox | Single Cell Analysis ( ) | Utility Tools ( ) | Convert Metadata to Cell
Annotations ( )

The tool can take an Expression Matrix ( ) / ( ), Velocity Matrix ( ), or Peak Count Matrix
( ) as input and produces a single Cell Annotations ( ) element. An example of this process
is shown in figure 18.1.

Figure 18.1: A Metadata Table (left) annotates a sample as being produced by ‘Lab A’ on
‘11.12.2010’. Convert Metadata to Cell Annotations converts this metadata into Cell Annotations
(right) where each cell in the sample is annotated with the same information.

The tool does not require the sample level metadata to be explicitly provided. Instead:

In a workflow the sample level metadata is taken from a Metadata Table provided to the
workflow, if present.

Otherwise the sample level metadata is collated from all the Metadata Tables that reference
the input Expression Matrix. If multiple such tables exist, their annotations are combined.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Metadata.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Metadata.html
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If the annotations are in conflict, for example one table says the sample has ‘Lab = Lab A’
and another says ‘Lab = Lab B’, then the Lab will be missing (and hence unknown) in the
combined table. Note that after connecting to a CLC Server, additional metadata tables,
only present on the server, may be found by the tool.

18.4 Combine Cell Clusters
Combine Cell Clusters can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Utility Tools ( ) | Combine Cell Clusters ( )

The tool takes as input multiple Cell Clusters ( ) and outputs a single Cell Clusters ( )
element. This can be useful to reduce the number of elements needed to describe a set of cells.

The combining is very flexible. For example, it supports:

• Different pieces of information for the same cells. An example could be predicted cell types
from Predict Cell Types with clusters from Cluster Single Cell Data.

• The same pieces of information from different cells.

• Different pieces of information from different cells.

Cells are considered to be the same if they have the same sample and barcode. Note that if two
Cell Clusters describe the same cell with contradictory information in the same category, then
combining will fail with a warning.

18.5 Update Cell Clusters
The Update Cell Clusters tool takes one Cell Clusters ( ) element as input and outputs a new
Cell Clusters ( ) element containing updated categories and/or clusters.

The tool can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Utility Tools ( ) | Update Cell Clusters ( )

In the first wizard step ‘Update categories’, the following options can be adjusted:

• Remove categories. The selected categories are removed.

• Remove all empty categories. Categories without any clusters are removed. Categories
are also removed if empty after removal of clusters (see below).

• Rename categories. One or more categories are renamed. The Add button can be used to
add additional categories to be renamed. Note that multiple categories cannot be renamed
to the same name.

• Rename all categories. All categories are renamed according to the given pattern. This
can be used for both prepending and appending to the name. E.g., if set to ‘MyPrefix
{categoryName} MySuffix’, a category ‘MyCategory’ will be renamed to ‘MyPrefix MyCategory
MySuffix’. This is done after the changes specified by Rename categories.
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In the next wizard step ‘Update clusters’, the clusters can be updated. The following options can
be adjusted:

• Update clusters for. The updates can be applied to:

– No categories. Skip updating clusters.

– All categories. Update the clusters for all categories.

– Selected category. Update the clusters only for the category selected in Update
clusters for category.

• Remove clusters. The selected clusters are removed.

• Remove all empty clusters. Clusters with no cells are removed.

• Rename clusters. One or more clusters are renamed. The Add button can be used to add
additional clusters to be renamed.

• Map clusters to QIAGEN Cell Ontology. When this is enabled, clusters will be translated,
if possible, to the QIAGEN Cell Ontology (see section 8.1). The translation attempts to
match each cluster with a QIAGEN cell type based on the name and known synonyms.
For example, ‘alveolar epithelial cells’ are also called ‘pneumocytes’. If this option is
selected, the ‘alveolar epithelial cells’ cluster, if present, will be named ‘pneumocytes’.
This option can be useful when standardizing clusters from different sources. It is especially
recommended if clusters will be used to extend a QIAGEN Cell Type Classifier using the
Train Cell Type Classifier tool (section 8.3).

If two distinct clusters are given the same name, they are combined into one. This can happen if:

• A cluster is renamed to an existing name.

• Two clusters are renamed to the same name.

• Two cluster names are synonyms for the same QIAGEN cell type and clusters are mapped
to the ontology.

The options above can be mixed and matched to obtain the desired output. For example, a
cluster can be first renamed and then the new name can be mapped to the ontology.

The Update Cell Clusters tool can also be started from the different views of the Cell Clusters
( ) element, with dialogs automatically filled in with relevant selections:

• From the clusters table view ( ):

– Clusters can be removed or renamed from the right-click menu. Multiple rows can be
selected before using the right-click menu.

– A category can be removed or renamed using the Remove and Rename buttons from
the Side Panel.

• From the cell-level view ( ), the category over which the mouse hovers can be removed or
renamed from the right-click menu.
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18.6 Add Information to Plot
Add Information to Plot can be found in the Toolbox here:

Toolbox | Single Cell Analysis ( ) | Utility Tools ( ) | Add Information to Plot ( )

The tool takes as input a plot of one of the following types:

• Dimensionality Reduction Plot ( ), see chapter 16.

• Phase Portrait Plot ( ), see section 10.4.

• Spatial Transcriptomics Plot ( ), see section 11.1.

The information to be added to the plot is set in the Information option. Multiple elements can
be chosen, at most one of the following types:

• Cell Clusters ( );

• Cell Annotations ( );

• Expression Matrix ( ) or Expression Matrix with spliced and unspliced counts ( );

• Peak Count Matrix ( );

• Velocity Matrix ( );

• Only when the input is a Spatial Transcriptomics Plot: Dimensionality Reduction Plot ( ).

Add Information to Plot produces a copy of the input plot, with associations to the selected
elements, such that they are available in the Side Panel. Note that dimensionality reduction
and phase portrait plots are already associated with the matrices that were used to produce the
plots.

The tool is intended for use in workflows, so that the association of the various elements can
be automated. Outside of a workflow setting, it is usually easier to achieve the same result by
dragging the elements from the Navigation Area into the Side Panel, see chapter 17 for details.

18.7 Update Single Cell Sample Name
There are a number of situations where the sample name needs to be updated:

• When analyzing

– scATAC-Seq or scV(D)J-Seq with matched scRNA-Seq, data originating from the same
sample must be annotated with the same sample name.

– spatial transcriptomics data, the Spatial Transcriptomics Plot and corresponding
Expression Matrix/Dimensionality Reduction Plot must have the same sample name.

Ideally, this should be done as a first step in the analysis pipeline, when running the Annotate
Single Cell Reads tool (see section 6.1) or when importing the data (see chapter 4). If this
has not been done, the sample names must be updated subsequently.
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• Multiple samples may be multiplexed with a hashtag identifying the sample. The hashtags
are first translated to Cell Annotations ( ) (see section 15.3) and then the samples are
demultiplexed using these annotations.

Update Single Cell Sample Name can be used in such situations. It can be found in the Toolbox
here:

Toolbox | Single Cell Analysis ( ) | Utility Tools ( ) | Update Single Cell Sample
Name ( )

The tool takes one element as input of one of the following types:

• Sequence List ( ) that has been annotated with Annotate Single Cell Reads;

• Expression Matrix ( ) / ( );

• Peak Count Matrix ( );

• Velocity Matrix ( );

• Cell Clusters ( );

• Cell Annotations ( );

• Cell Clonotypes ( ) / ( );

• Spatial Transcriptomics Plot ( ).

The output is a copy of the input where the sample name is updated. Typically the input and
output will contain the same cells, but note that sometimes cells can be discarded, see From
cell annotations below.

The sample name can be provided in one of three ways.

From element

When the input contains only one sample, the sample name can be updated to that found in a
second element provided in the Element option. The element can only contain one sample and
can be of one of the following types:

• Sequence List ( ) that has been annotated with Annotate Single Cell Reads;

• Expression Matrix ( ) / ( );

• Peak Count Matrix ( );

• Velocity Matrix ( );

• Cell Clusters ( );

• Cell Annotations ( );

• Cell Clonotypes ( ) / ( );

• Dot Plot ( );
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• Violin Plot ( );

• Dimensionality Reduction Plot ( );

• Spatial Transcriptomics Plot ( ).

Specify sample name

When the input contains only one sample, the sample name can be set as specified in the
Sample name option.

When the tool is run from the Toolbox, the option supports the placeholder {nameOrBatchId},
which sets the sample name to the name of the input. When the tool is run as part of a workflow,
this option will set the sample name to the name of the input for simple workflows, and to the
name of the batch identifier for batching/iterating workflows.

Note that it can also be set to an explicit name, such as ‘Individual_1’, or to a complex pattern
such as ‘Individual_{nameOrBatchId}_1’.

Additional placeholders are available when the tool is run as part of a workflow (see figure 18.2).

Figure 18.2: Options for configuring ‘Sample name’ when Update Single Cell Sample Name is run
in a workflow.

From cell annotations

The sample name can be set from a category from a Cell Annotations ( ) element. The barcodes
from the input are matched with the barcodes from the Cell Annotations. This makes it possible
to demultiplex to multiple samples. One of the following conditions must be met by both input
and Cell Annotations:

• Contain only one sample.

• Have unique barcodes across all samples.

• The input and Cell Annotations must be for the same samples. That is, the barcode and
sample name are equal for the same cell in the two elements.
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It is possible that the sample name cannot be determined for some cells. Two options are
available:

• Use original sample name. The sample name in the output will be the same as in the input
for such cells.

• Discard cell. The cells will not be part of the output.

As Sequence Lists ( ) can only represent one sample, their sample name cannot be set using
Cell Annotations.
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19.1 Expression Analysis from Reads
The workflow Expression Analysis from Reads takes Reads as input and starts by annotating them
with cell barcode and UMI, followed by trimming and mapping to create one or more Expression
Matrix ( ) / ( ). Then it performs quality control, normalization, clustering, and cell type
prediction. If enabled during execution, velocity analysis is also performed. The workflow uses
iterate functionality and allows for a combined analysis of multiple samples to produce:

• a single, multi-sample, normalized Expression Matrix ( ) / ( );
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• a Dimensionality Reduction Plot ( ) associated with the automated clusters, predicted
cell types and additional cell annotations;

• a Heat Map ( ), a Dot Plot ( ), and a Violin Plot ( ) with the predicted cell types as
cell groups;

• a Cell Abundance Heat Map ( ) with the automated clusters and predicted cell types as
cell groups.

• If velocity analysis is enabled during execution:

– a Phase Portrait Plot ( ) with per gene information on the velocity dynamics;

– a Velocity Genes Scores ( ) element allowing identification of velocity genes driving
the dynamics.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Reads ( ) | Expression
Analysis from Reads ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.

You can choose either one or more Sequence lists or Select files for import and select FASTQ
files for importing.

The workflow offers a number of options. Note that not all parameters can be configured. Open
parameters indicate places where customization may be necessary for different samples, but
default settings are suitable in most cases.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).

Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html. When creating custom
reference data sets, the chosen gene track needs to match the gene annotations used
for training the provided Cell Type Classifier ( ) (see section 8.3.1).

The workflow allows the analysis of multiple samples and you can specify metadata during work-
flow execution for configuring which inputs belong to which sample. When there is only one library
per sample, metadata is not necessary and "Use organization of input data" can be used, but
metadata can still be useful, as it is converted to cell annotations and can be used for coloring
the cells in the Dimensionality Reduction Plot. For more details on configuring workflow execu-
tion with metadata, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Running_workflows_in_batch_mode.html. Make sure to inspect the batch
overview to check that the analysis will be performed correctly.

Examples for how to use metadata for workflow execution can be found in section 19.1.1.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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It is important to select the proper read structure for annotating the reads with cell bar-
code and UMI. If the data has not been prepared using one of the predefined proto-
cols, a custom read structure can be specified as detailed in section 6.1, where a list of
many different single cell protocols is also linked. However, this requires editing the work-
flow, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.

php?manual=Creating_editing_workflows.html for details.

Spike-in controls can be provided, if used during sample preparation. To learn how to import
spike-in control files, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/

current/index.php?manual=Import_RNA_spike_in_controls.html.

The strand specificity and expected coverage bias must be specified. Strand specific "Forward"
is most common, though 5’ sequencing often requires strand specific "Reverse". For 5’
sequencing, we recommend setting coverage bias to "Targeted". If an unsuitable strand
specificity or coverage bias is chosen, warnings may be shown in the output RNA-Seq report (for
details see section 7.1.1.)

An option to count intronic reads towards gene expression is also present. This is recommended
when many transcripts are expected to be unprocessed, as is the case for single nucleus RNA
sequencing.

For quality control a number of options exist. The option to remove empty droplets is not suitable
for protocols that do not use droplets, and removing barcodes with low number of reads or
expressed features might be more appropriate. Quality Control (QC) uses the number of reads
mapped to the mitochondria, and for this the name of the mitochondria chromosome needs to
be provided. The default value is often the correct name. After quality control, the matrices are
collected and normalized jointly. Note that batch correction is not performed. Read more about
QC and normalization in chapter 7.

For clustering and creation of the Dimensionality Reduction Plot plot, it is possible to restrict
analysis to highly variable genes. The data is then projected to a lower dimensional space using
PCA. You can read about this feature in section 14.1.

Velocity can optionally be calculated by setting "Velocity Analysis" to "Run velocity analysis" in
the "Enable Velocity Analysis" wizard step, see section 10.5. Velocity is calculated for each
sample individually by default. If "Calculate velocity for each sample independently" is unticked,
the velocity is calculated using all cells across samples.

The high confidence predicted cell types ("Cell type (high confidence)") are used to group the
cells in the expression plots (Heat Map and Dot Plot) and Cell Abundance Heat Map, as well as
for scoring the velocity genes. The Cell Abundance Heat Map additionally groups the cells based
on the automated clusters obtained with resolution 1.0 ("Leiden (resolution=1.0)"). Any of these
groups can be changed to:

• all predicted cell types ("Cell type (all)");

• automated clusters obtained with a different resolution x ("Leiden (resolution=x)"). All
resolutions 0.1 ≤ x ≤ 1.5 are produced, in steps of 0.1.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_RNA_spike_in_controls.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Import_RNA_spike_in_controls.html
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19.1.1 Configuring the batch units for Expression Analysis from Reads

When there is only library per sample, metadata is not necessary for workflow execution. Let us
consider the FASTQ files shown in figure 19.1.

Figure 19.1: Example of ten FASTQ files for paired reads, originating from multiple lanes and three
libraries.

The files can be automatically imported during workflow execution by choosing "Select files
for import", selecting the Illumina importer and enabling "Paired reads" and "Join reads from
different lanes". Selecting "Use organization of input data" when defining the batch units will
lead to the input files being grouped in three libraries, as shown in figure 19.2. Note that if any
of the samples has more than 1 billion paired reads, the metadata approach described below
should be used instead.

Figure 19.2: Batch overview when importing the FASTQ files and choosing "Use organization of
input data".

Now let us consider the metadata shown in figure 19.3.

Metadata can be imported directly from an Excel or txt file during workflow execution and for
this example, the "Library" metadata column should be used for defining the batch units (see
figure 19.4).

The workflow will automatically associate the input files with the correct rows in the metadata
based on the first column and a batch overview similar to that in figure 19.2 will be shown. The
additional metadata columns will be converted to cell annotations.

Note that in this workflow it is not possible to freely choose the batch units. Instead, each batch
must correspond to one sample. The reason for the restriction is that each read is linked to a
cell by the cell barcode. Batching by sample is required in order to inform the workflow that if the
same cell barcode is present in multiple files, it is because it is the same cell.
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Figure 19.3: Example of metadata for the files from figure 19.1.

Figure 19.4: Configuring the workflow execution using metadata.

Failing to batch by sample will likely lead to misleading results. For example, in figure 19.4
it would be necessary to batch by library. If we batched by "Time point", then two cells with
the same barcode at time point T1 would be treated as being identical, even if one came from
sample S1 and the other from sample S2. If, on the other hand, we batched by "Library and
Lane", then a cell from sample S1 that was sequenced on both lanes would be split up into two
cells - one for each lane.

The workflow combines all inputs to produce just one matrix. All metadata, including "Sex" and
"Time point" in the provided example, will be available in the output cell annotations.

The FASTQ and metadata files can also be imported manually and used for the workflow execution.

19.1.2 Output from Expression Analysis from Reads

The workflow creates several output elements stored in a specific folder structure as indicated
in figure 19.5. The reports are valuable for assessing whether the appropriate parameters have
been used.
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Figure 19.5: The Results folder contains the output elements produced by the Expression Analysis
from Reads workflow when running using the sequence lists in the Input folder. The Reports and
Supplemental folders contain a subfolder for each of the batch units defined during execution.
Here, the "Use organization of input data" was used. Root elements originate from the combined
analysis of all inputs.

19.2 Chromatin Accessibility Analysis from Reads
The workflow Chromatin Accessibility Analysis from Reads takes Reads as input and starts by
annotating them with cell barcode and UMI, followed by trimming and mapping to create a Peak
Count Matrix ( ). Then it performs clustering. The workflow uses iterate functionality and allows
for a combined analysis of multiple samples to produce:

• a single multi-sample Peak Count Matrix ( );

• a Dimensionality Reduction Plot ( ) associated with the automated clusters.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Reads ( ) | Chromatin
Accessibility Analysis from Reads ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.
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You can choose either one or more Sequence lists or Select files for import and select FASTQ
files for importing.

The workflow offers a number of options. Note that not all parameters can be configured. Open
parameters indicate places where customization may be necessary for different samples, but
default settings are suitable in most cases.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).

Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html.

The workflow allows the analysis of multiple samples and you can specify metadata dur-
ing workflow execution for configuring which inputs belong to which sample. When there
is only one library per sample, metadata is not necessary and "Use organization of in-
put data" can be used. For more details on configuring workflow execution with meta-
data, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.

php?manual=Running_workflows_in_batch_mode.html. Make sure to inspect the batch overview to
check that the analysis will be performed correctly.

19.2.1 Configuring the batch units for Chromatin Accessibility Analysis from Reads

Consider the FASTQ files shown in figure 19.6.

Figure 19.6: Example of twelve FASTQ files for paired reads split in three files each. They originate
from two libraries with two lanes each.

The files can be automatically imported during workflow execution by choosing "Select files
for import", selecting the Illumina importer and enabling "Paired reads" and "Join reads from
different lanes". Note that for 10x ATAC reads "Use custom reads options" must be checked
and "Custom reads options" must be set to "R1,R2 R3", as shown in figure 19.7. Selecting
"Use organization of input data" when defining the batch units will lead to the input files being
grouped in two libraries, as shown in figure 19.8.

The FASTQ files can also be imported manually and used for the workflow execution.

19.2.2 Output from Chromatin Accessibility Analysis from Reads

The workflow creates several output elements stored in a specific folder structure as indicated in
figure 19.9.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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Figure 19.7: Example of twelve FASTQ files for paired reads, originating from multiple lanes and
two libraries.
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Figure 19.8: Batch overview when importing the FASTQ files and choosing "Use organization of
input data".

Figure 19.9: The Results folder contains the output elements produced by the Chromatin Acces-
sibility Analysis from Reads workflow when running using the sequence lists in the Input folder.
The Reports folder contains a subfolder for each of the batch units defined during execution and
combined reports for all samples. The Supplemental folder contains elements that can be viewed
in a track list. The read mapping can be further analyzed by sub-grouping with Split Read Mapping
by Cell (section 12.2).
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19.3 Chromatin Accessibility and Expression Analysis from Reads
The workflow Chromatin Accessibility and Expression Analysis from Reads takes 10x Multiome
ATAC and gene expression (GEX) reads as input and starts by annotating them with cell barcode
and UMI, followed by trimming.

During the annotation the barcodes from the ATAC reads are translated to barcodes that match
the cell barcodes of GEX reads. The ATAC reads are then mapped and, in case of multiple
samples, combined into one before producing one Peak Count Matrix ( ).

The GEX reads are analyzed as described in section 19.1. Clustering and dimensionality reduction
are performed using both expression and peak matrices.

The workflow allows for a combined analysis of multiple samples to produce:

• a single Peak Count Matrix ( );

• a single normalized Expression Matrix ( );

• a Dimensionality Reduction Plot ( ) associated with the automated clusters, predicted
cell types and additional cell annotations;

• a Heat Map ( ), a Dot Plot ( ), and a Violin Plot ( ) with the predicted cell types as
cell groups;

• a Cell Abundance Heat Map ( ) with the automated clusters and predicted cell types as
cell groups.

• If velocity analysis is enabled during execution:

– a Phase Portrait Plot ( ) with per gene information on the velocity dynamics;

– a Velocity Genes Scores ( ) element allowing identification of velocity genes driving
the dynamics.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Reads ( ) | Chromatin
Accessibility and Expression Analysis from Reads ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.

You can choose either one or more Sequence lists or Select files for import and select FASTQ
files for importing.

The workflow offers a number of options. Note that not all parameters can be configured. Open
parameters indicate places where customization may be necessary for different samples, but
default settings are suitable in most cases.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).
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Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html. When creating custom
reference data sets, the chosen gene track needs to match the gene annotations used
for training the provided Cell Type Classifier ( ) (see section 8.3.1).

The workflow allows the analysis of multiple samples. Metadata must always be specified for
configuring which inputs belong to which sample. In addition to group the input, metadata
is converted to cell annotations and can be used for coloring the cells in the Dimensionality
Reduction Plot.

For more details on configuring workflow execution with metadata, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_

in_batch_mode.html. Make sure to inspect the batch overview to check that the analysis will be
performed correctly.

19.3.1 Configuring the batch units for Chromatin Accessibility and Expression Anal-
ysis from Reads

Figure 19.10: ATAC and GEX reads for two samples along with metadata

Assume as an example that the input consists of ATAC and GEX reads for two samples as shown
in figure 19.10. The reads must be linked by metadata tables. That is, there must be one
metadata table with all ATAC reads and one with all GEX reads and the two must have a common
column linking them (e.g., Sample).

The batching can be configured as shown in figure 19.11. In this example:

• The batching is based on the column "Sample" in the metadata table for the ATAC reads.
There will be one iteration per distinct value, which typically means per row.

• The ATAC and GEX reads are matched by the same "Sample" column. It must be present in
both metadata tables. The matching column does not need to be the same as the batching
column, but it typically is.

There will be two iterations, one for the ATAC and GEX reads for sample S1 and one for S2 as
shown in figure 19.12.

It is also possible to use the same metadata table for ATAC and GEX reads. Then it must be
selected twice in the "Configure batching" wizard step.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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Figure 19.11: Configuring batching of coupled ATAC and GEX reads

Figure 19.12: Batch overview for coupled ATAC and GEX reads

19.3.2 Output from Chromatin Accessibility and Expression Analysis from Reads

The workflow creates several output elements stored in a specific folder structure as indicated in
figure 19.13.

19.3.3 Importing reads

The ATAC or GEX reads or both can be imported with on-the-fly imports when running the workflow.
This section will describe an example for the reads shown in figure 19.14.

The two sets of reads must be matched with metadata as shown in figure 19.15 and 19.16.
Both tables have a common column "Sample" which will be used for matching. Note that the
import of 10x ATAC reads must be configured with "Custom reads options" set to "R1,R2 R3"
as shown in figure 19.17.

The two sets of reads will be grouped in two batches as shown in figure 19.18.
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Figure 19.13: The Results folder contains the output elements produced by the Chromatin
Accessibility and Expression Analysis from Reads workflow
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Figure 19.14: FASTQ files for two samples with two lanes for both ATAC and GEX reads

Figure 19.15: Metadata for ATAC FASTQ files

Figure 19.16: Metadata for GEX FASTQ files
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Figure 19.17: Import settings for 10x ATAC FASTQ files

Figure 19.18: Batch overview for ATAC and GEX FASTQ files
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19.4 Immune Repertoire Analysis from Reads (10xV(D)J)
The workflow Immune Repertoire Analysis from Reads (10xV(D)J) takes 10xV(D)J reads as input
and starts by annotating them with cell barcode and UMI, followed by clonotype identification
and filtering. The workflow uses iterate functionality and allows for a combined analysis of
multiple samples to produce a single, multi-sample, filtered TCR Cell Clonotypes ( ) or BCR
Cell Clonotypes ( ) element.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Reads ( ) | Immune
Repertoire Analysis from Reads (10xV(D)J) ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.

You can choose either one or more Sequence lists or Select files for import and select FASTQ
files for importing.

The workflow is configured for 10x Chromium Single Cell V(D)J reads and only clonotype
filtering is customizable. Adjustments can be made in a workflow copy, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.

html.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).

Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html. Reference V, D, J and C
gene segments for other species or for B cells can be imported using Import Immune
Reference Segments (see section 4.8).

The workflow allows the analysis of multiple samples and you can specify metadata dur-
ing workflow execution for configuring which inputs belong to which sample. When there
is only one library per sample, metadata is not necessary and "Use organization of in-
put data" can be used. For more details on configuring workflow execution with meta-
data, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.

php?manual=Running_workflows_in_batch_mode.html. Make sure to inspect the batch overview to
check that the analysis will be performed correctly.

Examples for how to use metadata for workflow execution can be found in section 19.1.1.

The Filter Cell Clonotypes ( ) tool in the workflow is configured with most parameters locked,
see 19.19. There are two open options. "Chains to retain" allows selecting the chains that are
expected to be found, and removes noise from the results. "Multiple clonotypes" allows different
handling of barcodes with more than one clonotype. The default option Retain primary retains
only the clonotype with the highest number of reads. See section 13.3 for details.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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Figure 19.19: Workflow settings of the Filter Cell Clonotypes tool.

19.4.1 Output from Immune Repertoire Analysis from Reads (10xV(D)J)

The workflow creates several output elements stored in a specific folder structure as indicated in
figure 19.20. The reports are valuable for assessing whether the appropriate parameters have
been used.

Read more about the clonotype reports in section 13.1.1 and TCR Cell Clonotypes ( ) or BCR
Cell Clonotypes ( ) in section 13.2.
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Figure 19.20: The Results folder contains the output elements produced by the Immune Repertoire
Analysis from Reads (10xV(D)J) workflow when running using the sequence lists in the Input folder.
The Reports and Supplemental folders contain a subfolder for each of the batch units defined
during execution. Here, the "Use organization of input data" was used. Root elements originate
from the combined analysis of all inputs.

19.5 Immune Repertoire and Expression Analysis from Reads (10xV(D)J)
The workflow Immune Repertoire and Expression Analysis from Reads (10xV(D)J) takes reads as
input and jointly analyzes scRNA-Seq and scV(D)J-Seq data originating from the same sample.
The reads are first annotated with cell barcode and UMI, after which they are sent on two different
paths, one for each type of data. The workflow splits the reads according to sample and data
type, as given through metadata.

The scRNA-Seq and scV(D)J-Seq paths follow the same analysis described in section 19.1
and section 19.4, respectively.

The workflow uses the iterate functionality and allows for a combined analysis of multiple samples
to produce:

• a single, multi-sample, normalized Expression Matrix ( ) / ( );

• a single, multi-sample, filtered TCR Cell Clonotypes ( ) or BCR Cell Clonotypes ( )
element;

• a Dimensionality Reduction Plot ( ) associated with the automated clusters, predicted
cell types, identified clonotypes and additional cell annotations;

• a Heat Map ( ), a Dot Plot ( ), and a Violin Plot ( ) with the predicted cell types as
cell groups;

• a Cell Abundance Heat Map ( ) with the automated clusters and predicted cell types as
cell groups.
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• If velocity analysis is enabled during execution:

– a Phase Portrait Plot ( ) with per gene information on the velocity dynamics;

– a Velocity Genes Scores ( ) element allowing identification of velocity genes driving
the dynamics.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Reads ( ) | Immune
Repertoire and Expression Analysis from Reads (10xV(D)J) ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.

You can choose either one or more Sequence lists or Select files for import and select FASTQ
files for importing.

The workflow is configured for 10x Chromium Single Cell V(D)J data. For the scRNA-Seq path,
a number of options are customizable, see section 19.1. For the scV(D)J-Seq path, only
clonotype filtering is customizable, see section 19.4. Adjustments can be made in a workflow
copy, see http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.

php?manual=Creating_editing_workflows.html.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).

Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html. When creating custom
reference data sets, the chosen gene track needs to match the gene annotations used for
training the provided Cell Type Classifier ( ) (see section 8.3.1). Reference V, D, J and
C gene segments for other species or for B cells can be imported using Import Immune
Reference Segments (see section 4.8).

The workflow allows the analysis of multiple samples and you must specify metadata during
execution for configuring which reads belong to which sample and data type, see section 19.5.1.

19.5.1 Configuring the batch units for Immune Repertoire and Expression Analysis
from Reads (10xV(D)J)

The Immune Repertoire and Expression Analysis from Reads (10xV(D)J) workflow requires
metadata containing information about the sample of origin and data type: scRNA-Seq or scV(D)J-
Seq (figure 19.21). This can be created a priori, or it can imported directly from an Excel or txt file
during workflow execution. For more information about Metadata Tables, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Metadata.html.

During the workflow execution, it must be configured which metadata columns define the sample:
"Iterate over Sample" and data type: "Iterate over RNA and V(D)J", and which values from the data
type column correspond to scRNA-Seq and scV(D)J-Seq data, respectively. For more details on con-
figuring workflow execution with metadata, see http://resources.qiagenbioinformatics.com/manuals/

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Metadata.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Metadata.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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Figure 19.21: A Metadata Table associating the reads to samples and data type. The sample of
origin is given in the "Sample" column, while the data type is given in the "Type" column, with
values "Gene Expression" for scRNA-Seq data, and "V(D)J" for scV(D)J-Seq data. The associated
elements are opened on the bottom.

clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html. Make sure to
inspect the batch overview to check that the analysis will be performed correctly.

Figures 19.22 and 19.23 show how the workflow should be configured using the input reads and
metadata from figure 19.21, and the resulting batch overview is given in figure 19.24.

Figure 19.22: Configuring sample and data type during workflow execution using the metadata
from figure 19.21.

An additional example for importing the reads and metadata during workflow execution can be

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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Figure 19.23: Configuring scRNA-Seq and scV(D)J-Seq reads distribution during workflow execution
using the metadata from figure 19.21.

Figure 19.24: Batch overview for the configuration shown in figures 19.22 and 19.23.

found in section 19.1.1.

19.5.2 Output from Immune Repertoire and Expression Analysis from Reads (10xV(D)J)

The workflow creates several output elements stored in a specific folder structure as indicated in
figure 19.25. The reports are valuable for assessing whether the appropriate parameters have
been used.
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Figure 19.25: The Results folder contains the output elements produced by the Immune Repertoire
and Expression Analysis from Reads (10xV(D)J) workflow when running using the sequence lists in
the Input folder. The Reports and Supplemental folders contain a subfolder for each of the batch
units defined during execution. Here, the metadata from figure 19.21 was used. Root elements
originate from the combined analysis of all inputs.
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20.1 Expression Analysis from Matrix
The workflow Expression Analysis from Matrix takes one or more Expression Matrix ( ) /
( ) as input and performs quality control, normalization, clustering, and cell type prediction.
If enabled during execution, velocity analysis is also performed. The workflow uses iterate
functionality and allows for a combined analysis of multiple samples to produce:

• a single, multi-sample, normalized Expression Matrix ( ) / ( );

• a Dimensionality Reduction Plot ( ) associated with the automated clusters, predicted
cell types and additional cell annotations;

• a Heat Map ( ), a Dot Plot ( ), and a Violin Plot ( ) with the predicted cell types as
cell groups;

• a Cell Abundance Heat Map ( ) with the automated clusters and predicted cell types as
cell groups.

• If velocity analysis is enabled during execution:

– a Phase Portrait Plot ( ) with per gene information on the velocity dynamics;

252
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– a Velocity Genes Scores ( ) element allowing identification of velocity genes driving
the dynamics.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Imported Data ( ) |
Expression Analysis from Matrix ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.

Choose either one or more Expression Matrix ( ) / ( ) or Select files for import and
select the formats that are compatible with the selected inputs. Read more about import options
in section 20.4.

The workflow offers a number of options. Note that not all parameters can be configured. Open
parameters indicate places where customization may be necessary for different samples, but
default settings are suitable in most cases.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).

Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html. When creating custom
reference data sets, the chosen gene track needs to match the gene annotations used
for training the provided Cell Type Classifier ( ) (see section 8.3.1).

The workflow allows the analysis of multiple samples and you can specify metadata during
workflow execution. This is converted to cell annotations and can be used for coloring the cells
in the Dimensionality Reduction Plot. However, the workflow expects each sample to be present
in just one Expression Matrix, and attempting to define batch units containing more than one
Expression Matrix will lead to a failure during execution.

For more details on configuring workflow execution with metadata, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_

in_batch_mode.html. Make sure to inspect the batch overview to check that the analysis will be
performed correctly.

For quality control a number of options exist. The option to remove empty droplets is not suitable
for protocols that do not use droplets, and removing barcodes with low number of reads or
expressed features might be more appropriate. Quality Control (QC) uses the number of reads
mapped to the mitochondria, and for this the name of the mitochondria chromosome needs to
be provided. The default value is often the correct name. After quality control, the matrices are
collected and normalized jointly. Note that batch correction is not performed. Read more about
QC and normalization in chapter 7.

For clustering and creation of the Dimensionality Reduction Plot plot, it is possible to restrict
analysis to highly variable genes. The data is then projected to a lower dimensional space using
PCA. You can read about this feature in section 14.1.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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Velocity can optionally be calculated by setting "Velocity Analysis" to "Run velocity analysis" in
the "Enable Velocity Analysis" wizard step, see section 10.5. Velocity is calculated for each
sample individually by default. If "Calculate velocity for each sample independently" is unticked,
the velocity is calculated using all cells across samples.

The high confidence predicted cell types ("Cell type (high confidence)") are used to group the
cells in the expression plots (Heat Map and Dot Plot) and Cell Abundance Heat Map, as well as
for scoring the velocity genes. The Cell Abundance Heat Map additionally groups the cells based
on the automated clusters obtained with resolution 1.0 ("Leiden (resolution=1.0)"). Any of these
groups can be changed to:

• all predicted cell types ("Cell type (all)");

• automated clusters obtained with a different resolution x ("Leiden (resolution=x)"). All
resolutions 0.1 ≤ x ≤ 1.5 are produced, in steps of 0.1.

20.1.1 Output from Expression Analysis from Matrix

The workflow creates several output elements stored in a specific folder structure as indicated
in figure 20.1. The reports are valuable for assessing whether the appropriate parameters have
been used.

Figure 20.1: The Results folder contains the output elements produced by the Expression Analysis
from Matrix workflow when run using the Expression Matrices in the Input folder. The Reports
folder contains a subfolder for each of the batch units defined during execution. Here, the "Use
organization of input data" was used. Note that Matrix-S2 contained two samples and so two QC
reports are produced. Root elements originate from the combined analysis of all inputs.

20.2 Chromatin Accessibility and Expression Analysis from Matrix
The workflow Chromatin Accessibility and Expression Analysis from Matrix takes a pair of an
Expression Matrix ( ) / ( ) and a Peak Count Matrix ( ) as input to jointly analyze
scRNA-Seq and scATAC-Seq data originating from the same sample or samples.
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The expression matrix is analyzed as described in section 20.1. Clustering and dimensionality
reduction are performed using both expression and peak matrices.

The workflow allows for a combined analysis to produce:

• a single normalized Expression Matrix ( );

• a Dimensionality Reduction Plot ( ) associated with the automated clusters, predicted
cell types and additional cell annotations;

• a Heat Map ( ), a Dot Plot ( ), and a Violin Plot ( ) with the predicted cell types as
cell groups;

• a Cell Abundance Heat Map ( ) with the automated clusters and predicted cell types as
cell groups.

• If velocity analysis is enabled during execution:

– a Phase Portrait Plot ( ) with per gene information on the velocity dynamics;

– a Velocity Genes Scores ( ) element allowing identification of velocity genes driving
the dynamics.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Imported Data ( ) |
Chromatin Accessibility and Expression Analysis from Matrix ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.

Choose either one or more Expression Matrix ( ) / ( ) and Peak Count Matrix ( ) or Select
files for import and select the formats that are compatible with the selected inputs. Read more
about import options in section 20.4.

The workflow offers a number of options. Note that not all parameters can be configured. Open
parameters indicate places where customization may be necessary for different samples, but
default settings are suitable in most cases.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).

Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html. When creating custom
reference data sets, the chosen gene track needs to match the gene annotations used
for training the provided Cell Type Classifier ( ) (see section 8.3.1).

20.2.1 Output of Chromatin Accessibility and Expression Analysis from Matrix

The workflow creates several output elements stored in a specific folder structure as indicated in
figure 20.2.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
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Figure 20.2: The Results folder contains the output elements produced by the Chromatin Accessi-
bility and Expression Analysis from Matrix workflow

20.3 Immune Repertoire and Expression Analysis from Clonotypes and
Matrix

The workflow Immune Repertoire and Expression Analysis from Clonotypes and Matrix takes one
or more Expression Matrix ( ) / ( ) and TCR Cell Clonotypes ( ) or BCR Cell Clonotypes
( ) elements as input to jointly analyze scRNA-Seq and scV(D)J-Seq data originating from the
same sample or samples. The Expression Matrices and Cell Clonotypes are sent on two different
paths, for scRNA-Seq and scV(D)J-Seq data, respectively. The scRNA-Seq path follows the same
analysis described in section 20.1, while the scV(D)J-Seq path ensures that clonotypes are
filtered accordingly.

The workflow uses the iterate functionality and allows for a combined analysis of multiple samples
to produce:

• a single, multi-sample, normalized Expression Matrix ( ) / ( );

• a single, multi-sample, filtered TCR Cell Clonotypes ( ) or BCR Cell Clonotypes ( )
element;

• a Dimensionality Reduction Plot ( ) associated with the automated clusters, predicted
cell types, identified clonotypes and additional cell annotations;

• a Heat Map ( ), a Dot Plot ( ), and a Violin Plot ( ) with the predicted cell types as
cell groups;

• a Cell Abundance Heat Map ( ) with the automated clusters and predicted cell types as
cell groups.

• If velocity analysis is enabled during execution:

– a Phase Portrait Plot ( ) with per gene information on the velocity dynamics;
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– a Velocity Genes Scores ( ) element allowing identification of velocity genes driving
the dynamics.

The workflow can be found here:

Template Workflows | Single Cell Workflows ( ) | From Imported Data ( ) |
Immune Repertoire and Expression Analysis from Clonotypes and Matrix ( )

If you are connected to a CLC Server via the CLC Workbench, you will be asked where you would
like to run the analysis. We recommend that you run the analysis on a CLC Server when possible.

Choose either one or more Expression Matrix ( ) / ( ) and TCR Cell Clonotypes ( ) or
BCR Cell Clonotypes ( ) elements or Select files for import and select the formats that are
compatible with the selected inputs. Read more about import options in section 20.4.

For the scRNA-Seq path, a number of options are customizable, see section 20.1. For
the scV(D)J-Seq path, only clonotype filtering is customizable, as described in section 19.4.
Adjustments can be made in a workflow copy, see http://resources.qiagenbioinformatics.com/

manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html.

The workflow can be run using Single Cell hg38 (Ensembl) or Single Cell Mouse (Ensembl)
reference data sets (see chapter 2).

Note: Reference data elements cannot be configured during workflow execution. If other
elements than those provided in the default reference data sets are needed, a custom
reference data set can be used, see http://resources.qiagenbioinformatics.com/manuals/

clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html. When creating custom
reference data sets, the chosen gene track needs to match the gene annotations used for
training the provided Cell Type Classifier ( ) (see section 8.3.1). Reference V, D, J and
C gene segments for other species or for B cells can be imported using Import Immune
Reference Segments (see section 4.8).

The workflow allows the analysis of multiple samples and you can specify metadata during
workflow execution. This is converted to cell annotations and can be used for coloring the cells
in the Dimensionality Reduction Plot. However, the workflow expects each sample to be present
in just one Expression Matrix, and attempting to define batch units containing more than one
Expression Matrix will lead to a failure during execution. Similarly, each sample is expected to
be present in just one Cell Clonotypes element.

For more details on configuring workflow execution with metadata, see http://resources.

qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_

in_batch_mode.html. Make sure to inspect the batch overview to check that the analysis will be
performed correctly.

20.3.1 Output from Immune Repertoire and Expression Analysis from Clonotypes and
Matrix

The workflow creates several output elements stored in a specific folder structure as indicated
in figure 20.3. The reports are valuable for assessing whether the appropriate parameters have
been used.

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Creating_editing_workflows.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Custom_Sets.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Running_workflows_in_batch_mode.html
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Figure 20.3: The Results folder contains the output elements produced by the Immune Repertoire
and Expression Analysis from Clonotypes and Matrix workflow when run using the Expression
Matrices and Cell Clonotypes in the Input folder. The Reports folder contains a subfolder for each
of the batch units defined during execution. Here, the "Use organization of input data" was used.
Note that Matrix-S2 contained two samples and so two QC reports are produced. Root elements
originate from the combined analysis of all inputs.

20.4 Importing data
The elements needed for executing the workflows can either be imported prior to the execution,
or can be automatically imported during execution, see http://resources.qiagenbioinformatics.com/

manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_individually_in_batches.

html.

For details on importers, see chapter 4.

If the workflow uses two different types of input elements, such as Expression Matrix ( ) /
( ) and Peak Count Matrix ( ) or Expression Matrix ( ) / ( ) and TCR Cell Clonotypes
( ) or BCR Cell Clonotypes ( ) element, the sample in the input elements must be the same
for cells originating from the same sample. This can be achieved in different ways, depending on
how the elements were generated:

• If the input elements were generated in the CLC Single Cell Analysis Module, the sample
name can be set when running the Annotate Single Cell Reads tool, see section 6.1.1.

• If the input elements are imported, the sample name can be set during import through the
Cell format or Sample options, see section 4.7. This can be used both when importing the
elements prior to or during execution.

• The tool Update Single Cell Sample Name ( ) can be used for updating the sample name
in either input element, see section 18.7. This requires processing the elements before
executing the workflow.

Care must be take when executing a workflow in batch mode using on-the-fly import, as options
that are explicitly supplied will be used for all imported files:

http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_individually_in_batches.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_individually_in_batches.html
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Launching_workflows_individually_in_batches.html
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• Defining the sample through the Cell format or Sample options. If the files to be imported
do not share the same Cell format and/or Sample, they need to be imported separately
before the workflow execution.

• Importing nearby genes and/or transcription factors for Peak Count Matrices. The HDF5
importer is limited to reading just one file for nearby genes and/or transcription factors
(figure 20.4), while the archive MEX format allows bundling separate nearby genes and/or
transcription factors in each archive (figure 20.5) and is hence better suited for batch
execution.

Figure 20.4: Specifying nearby genes and transcription factors for HDF5 import.
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Figure 20.5: Specifying nearby genes and transcription factors for archive MEX import.
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