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Introduction
The goal of the Regulator Effects analytic in IPA is to provide insight into the causes and effects of differentially expressed 
genes or proteins in a dataset. Regulator Effects explains how predicted activated or inhibited upstream regulators might 
cause increases or decreases in phenotypic or functional outcomes downstream. These causal hypotheses take the form of 
directionally coherent networks formed from the merger of Upstream Regulator networks with Downstream Effects networks, 
which are described in a recent publication (Krämer et al. 2014) as well as in white papers available on www.qiagenbioin-
formatics.com. The resulting Regulator Effects networks can provide possible drug targets, mechanisms of toxicity, mechanism 
of efficacy and more.

The networks are derived dynamically based on the user’s input dataset and findings in the Ingenuity Knowledge Base and  
are displayed in three tiers. The top tier is comprised of one or more upstream regulators, while the bottom tier is comprised 
of one or more diseases, functions, or phenotypes. The middle tier is made up of the dataset molecules that connect to the 
regulators above and to the diseases and functions below, and are predicted to be the intermediaries that carry the signal 
from the upstream regulators to downstream outcomes. If there are known relationships between upstream regulators and 
downstream diseases or functions in the bottom tier they are called out in the results and displayed in the networks. A 
Consistency Score is calculated for each Regulator Effect network, where higher scores are awarded to networks that are 
directionally consistent, meaning that most of the paths from regulator to target to disease/function are consistent with the 
predicted state of the regulator, the observed direction of expression of the target in the dataset and the expected impact 
on the disease/function downstream, based on findings from the literature.

The Algorithm
The Regulator Effects algorithm generates hypotheses that 
explain how the activation or inactivation of regulators 
leads to an increase or decrease of function and disease-
related outcomes based on the evidence provided by a 
dataset. These hypotheses are visualized as networks. 
The building blocks of these networks are the Upstream 
Regulator and Downstream Effect results from the analysis of 
the experimental dataset. The algorithm takes these building 
blocks as inputs and merges them to generate hypotheses 
through a process typically involving three phases.

Phase 1: Initialization

In this first phase, networks from Upstream Regulator 
Analysis are paired with networks from Downstream Effects 
Analysis to create many simple networks consisting of a 
single regulator, a single function/disease, and the data-
set molecules involved with both. This is described in the 
diagram below. Each Upstream Regulator is paired with 
the Downstream Effect that is its best match, and likewise, 
each Downstream Effect is paired with its best Upstream 
Regulator match.



Regulator Effects in IPA  3

Phase 1: Find the single best downstream effect network for 
each upstream regulator

Likewise, find the single best matching regulator for each 
downstream effect

In order to be considered a ‘best match’ pair, the combina-
tion of regulator and function/disease must meet the follow-
ing criteria:

• The set of dataset molecules downstream of the regula-
tor (i.e. regulator targets) and the set of dataset mol-
ecules upstream of the function/disease (i.e. molecules 
driving the effect on function/disease) must overlap by 
a minimum of three dataset molecules.

• The Fisher’s Exact Test p-value of the overlap between 
the regulator and function/disease dataset molecules 
must be <= 0.05. The four inputs for this statistical test 
are

1) The intersection of the regulator target set and the 
function/disease molecule set,

2) The molecules in the regulator target set not in the 
intersection,

3) The molecules in the function/disease set not in the 
intersection, and

4) The molecules in the reference set (i.e. all molecules 
neighboring all regulators and all functions/diseases 
from the Upstream Regulator and Downstream Effect 
results that met the filter criteria) minus the molecules in 
the regulator and function/disease sets.

To find the best match for an Upstream Regulator, the 
algorithm merges the regulator and its targets with each 
Downstream Effect (if the pair meets the above criteria). For 
each best match pair, a Consistency Score (described in its 
own section below) is calculated on the resulting network 
and the network with the highest score is retained. If best 
match pairs have the same Consistency Score and involve 
the same dataset molecules, the networks are merged into 
a larger network containing the union of the regulators and 
functions/diseases.

At the end of the Phase 1, the algorithm will have produced 
a collection of small networks generally consisting of a 
single regulator, a single function/disease, and their shared 
dataset molecules. If the user chose the “Minimal regula-
tor to function networks” option when initiating Regulator 
Effects, the algorithm will stop at this point.

Phase 2: Merge by Score

The second phase of the algorithm starts with the set of sim-
ple networks produced by the first phase. For each network 
in the set, the algorithm pairs it with every other network 
in the set, looking for the merger that results in the highest 
Consistency Score. As in the first phase, the pair must meet 
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the minimum overlap and maximum p-value threshold in 
order to be considered. If the resulting merged network has 
a Consistency Score better than the individual Consistency 
Scores of the two original networks, the newly created net-
work is retained; otherwise the two original networks are 
retained. This is depicted in the diagram below. An iteration 
consists of comparing every network in the set to all other 
networks, evaluating if the merged networks have a better 
Consistency Score. At the end of the iteration, if new net-
works have been created, then the process repeats again, 
this time operating only on the newly created networks. The 
iterations continue until no networks can be combined to 
create new larger networks with better Consistency Scores.

Phase 2: Merge pairs of networks if the merger creates a 
higher scoring network

Phase 3: Merge by Similarity

By the end of the second phase, the Consistency Scores of 
the networks cannot be improved by merging. However, it 
is possible that some of the networks may be very similar 
in terms of the regulators, functions, and dataset molecules 

they contain, and they may appear almost redundant. 
Therefore, the third phase of the algorithm will merge net-
works that are so similar they essentially describe the same 
hypothesis. Similar networks will be merged in this step if:

• They have positive Consistency Scores

• The networks differ by three or fewer regulators and 
functions/diseases.

• The Consistency Score of the resulting merged network 
is at least 75% the original scores, i.e. reducing redun-
dancy is prioritized over increasing the Consistency 
Score.

After networks are merged by similarity, any known rela-
tionships between regulators and between regulators and 
diseases/functions from the Ingenuity Knowledge Base are 
added to the networks for informational purposes (as shown 
in the schematic below as red lines). The final merger and 
annotation is shown in the diagram below. At this point, the 
Regulator Effect networks are complete.

Phase 3: Reduce redundancy by merging networks that 
consist of almost the same regulators and disease/functions

The results are displayed in a table in the IPA user inter-
face, where each row represents a distinct Regulator 
Effects network ranked by Consistency Score. Additional 
columns are included to enumerate various characteristics 
of each network, and a link is provided to visualize each 
network.
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The Consistency Score
The Consistency Score is a measurement used to help rank 
or prioritize the most useful networks. Its intent is to reward 
smaller networks with nodes highly connected by consistent 
relationships. A consistent relationship is one in which the 
direction of node activity/expression that is observed or 
predicted is consistent with the direction one would expect 
based on the findings from the Ingenuity Knowledge Base. 
The Consistency Score is not itself a measure of statistical 
significance, but a heuristic to rank a set of already statisti-
cally significant networks within the same analysis and set-
tings. The Consistency Score formula is given as:

Where:

• Pc is the total number of consistent paths from regulator 
to function (through dataset targets).

• Wc is the weight that rewards for consistent paths and 
is set to 1.

• Pi is the total number of inconsistent paths.

• Wi is the weight that penalizes inconsistent paths and 
is set to -15.

• Pn is the total number of non-causal paths.

• Wn is the weight for non-causal paths. Set to 0 (e.g. 
non-causal paths don’t affect the score).

• S is the size (the total number of dataset targets).

• Ws is a penalty weight for the size of the network and 
is set to 0.5.

Each path consists of two parts, from regulator to dataset 
molecule and from dataset molecule to disease/function. 
Note that in cases where one segment of the path is not 
causal, then the entire path is considered non-causal. 
Additionally, if one segment of a path is inconsistent, all 
paths containing that segment will be considered inconsis-
tent.

To clarify how the Consistency Score is calculated, take the 
following real network with Consistency Score = 3.328. 
(See below)
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In this network, there are 13 paths from TGFB3 to the func-
tion “migration of tumor cell lines.” On 12 of those paths, 
the direction of activation/expression for the nodes is con-
sistent with the direction expected based on the findings 
from the literature between the nodes.

One path, TGFB3->CDKN1B->migration of tumor cell 
lines is different. The path segment TGFB3->CDKN1B is 
inconsistent. The findings from the literature suggest that 
TGFB3 activates CDKN1B (as depicted by the arrowhead 
of the edge between them); therefore, one would expect 
that if TGFB3 were increasing in activity, CDKN1B would 
also increase. However in the dataset, the expression of 
TGFB3 was observed to be decreasing. Therefore the 
direction expected based on findings differs from the direc-
tion observed/predicted, and the edge is inconsistent and 
colored yellow. Additionally, the findings that support the 
path segment CDKN1B->migration of tumor cell lines have 
no causal effect; therefore it is colored gray. If any segment 
along a path has no known directional causal effect, then 
the entire path has no effect, so for the Consistency Score, 
the path TGFB3->CDKN1B->migration of tumor cell lines 
has no causal effect.

As a result, the individual values used in the calculation are 
as follows:

Pc = 12  (There are 12 consistent paths)
Wc = 1  (The weight for consistent paths is 1)
Pi = 0  (There are no inconsistent paths, only a non-  
 causal path)
Wi =-15 (The weight for inconsistent paths is -15)
Pn = 1  (There is 1 non-causal path)
Wn=0  (The weight of non-causal paths is 0, these do   
 not affect the score)
S = 13 (There are 13 dataset targets, shown in the   
 middle layer of the network)
Ws = 0.5  (This constant is set to 0.5)

= (12*1) + ((0*(-15)) + (1*0) / (13^0.5) = 3.328

Regulator effect example from 
a real dataset

On the next page is an example of a top scoring network 
obtained from the Regulator Effects analysis of RNA-Seq 
gene expression data from “claudin-low” type breast cancer 
cell lines that have been ratio’ed to breast cancer lines with 
a more luminal-like gene expression pattern. These claudin-
low cell lines have been characterized as a relatively 
more aggressive type of breast cancer having potentially 
undergone an epithelial to mesenchymal transition (Prat and 
Perou, 2011).

In the network shown, orange and blue lines represent 
relationships with causal consistency (though in this par-
ticular network, there are no inconsistent relationships). For 
example, an orange line connects SNAI1 (which is itself 
filled with orange color because the Upstream Regulator 
Analysis predicted it to be activated) to ZEB2 (which is 
overexpressed in the claudin-low lines and is therefore filled 
with red color) because SNAI1 is known from the literature 
to increase the expression of ZEB2 (See for example Taube 
et al 2010).

Note that some of the dataset targets displayed in the mid-
dle tier may themselves have been predicted to be activated 
or inhibited upstream regulators in the analysis, and in 
such cases will be colored orange or blue respectively (for 
example TGFB1 in the network above). In such instances, 
it is possible that the dataset target’s differential expression 
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value may be in conflict with its upstream regulator z-score. 
For example, the gene may be downregulated in the dataset 
(and would have been colored green), but the upstream reg-
ulator analysis predicted it to be activated. Regulator Effects 
will prioritize z-score over differential expression, so such 
a gene would be considered “activated” when creating 
the Regulator Effects network and will be rendered orange 
rather than green. In this particular instance, TGFB1 is in 
agreement with the z-score – it is upregulated in the dataset.

As mentioned above, relationships between regulators and 
between regulators and diseases/functions are displayed in 
the network if they are known in the Ingenuity Knowledge 
Base. For example, relationships are shown between the 
regulator SNAI1 and the function “epithelial-mesenchymal 
transition of tumor cell lines”. This feature enables the user 
to discover potentially novel relationships if there is no line 
shown between a regulator and a function for example.

There are a number of options provided by IPA so that the 
user can tailor the type of Regulator Effects networks that are 
generated to answer specific research questions. By default, 
Regulator Effects only includes upstream regulators that are 

genes, RNAs, or proteins (e.g. excludes chemicals/drugs), 
and demands that the regulators and diseases/functions that 
are fed into the algorithm have an absolute z-score >2 and 
p-value <0.05. However, the user can change these settings 
to include for example only single chemicals, microRNAs, 
or growth factors as upstream regulators or for example to 
exclusively consider cardiovascular diseases downstream. 
Or the user can use more lenient or more stringent z-scores 
and p-values as input when generating the networks. These 
settings are made in IPA as shown below:



Sample to Insight

Americas
1001 Marshall Street, Suite 200
Redwood City, CA  94063
USA
Phone: +1 (617) 945 0178

EMEA
Silkeborgvej 2 · Prismet
8000 Aarhus C
Denmark
Phone: +45 7022 5509

QIAGEN Bioinformatics

Conclusion
Regulator Effects in IPA helps you make insights about your 
data by integrating the Upstream Regulator results with 
Downstream Effects results to create causal hypotheses 
that explain how upstream regulators may cause particular 
phenotypic or functional outcomes downstream. It provides 
simplifying and actionable hypotheses that increase the 
value of gene and protein expression experiments.
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You can learn more about IPA, or sign up for a free trial, at 
www.qiagenbioinformatics.com.


