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Introduction
Whole genome and exome sequencing is widely used to 

identify disease-causing variants in patients with multiple 

congenital abnormalities and rare, undiagnosed genetic 

disorders. However, a key challenge in using this approach 

is finding the true causal variant among the hundreds of 

rare, functional (coding and/or regulatory) variants. It can 

take hours to evaluate the relationship between variants in 

a patient’s sequence data and his phenotype or disease, in 

order to identify the disease-causing mutation (1). In addi-

tion, the disease-causing variant is successfully identified 

in only 25-30% cases (2,3). Therefore, we propose using 

phenotype and genotype data in conjunction to prioritize 

variants for further evaluation and increase overall solve 

rate. This approach draws from a network of phenotype-

phenotype, phenotype-disease, and disease-gene relation-

ships established from the QIAGEN Knowledge Base, and 

looks for plausible diseases that can explain both the phe-

notypes observed as well as the genetic variations detected 

(Figure 1 - A). For each disease, we can compute a score 

that represents the similarity between phenotype profile and 

disease, and this score is in turn used to rank variants that 

reside in disease-implicated genes.
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Figure 1 - A: Schematic of 
phenotype-gene-disease asso-
ciations
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Mapping of phenotypes
Users may enter a phenotype term as free-text or provide 

an HPO identifier in standard format (e.g. HP:0000213). 

As a term is entered, the QIAGEN Knowledge Base supplies 

phenotypes matching the text as an autocompleted entry 

or as alternatives for selection. Spacing, capitalization, 

and hyphenation are normalized during fuzzy-matching 

of entered terms. Supported phenotype terms include all 

names and synonyms for any disease, abnormality, or 

biological process computationally associated with find-

ings in the QIAGEN Knowledge Base. More than 60,000 

phenotypes are available, including 44,000 phenotypes 

associated with variants in our Knowledge Base.

We currently support HPO phenotypes cited in 92% of the 

phenotype annotations described by HPO or Orphanet for 

OMIM or Orphanet diseases. 

For supported HPO phenotypes, both primary and alternate 

identifiers, as well as primary term and all synonyms, are 

available for mapping. Inclusion of HPO terms has been 

prioritized based on frequency of their use in phenotype 

annotations, and improvements in coverage are ongoing.

Scoring algorithm
The scoring algorithm is based on a heuristic that uses evi-

dence from the QIAGEN Knowledge Base to connect genes 

and associated diseases with user-provided disease pheno-

types (Figure 2 - A). A directed network is built from gene/

disease relationships and disease/phenotype relationships, 

as well as the process hierarchy (ontology) that relates more 

specific terms of diseases and phenotypes to more general 

terms in a hierarchical manner. For each gene/disease 

combination, a score is calculated indicating its relevance 

in the context of the user-provided, observed phenotypes. By 

and large, this score counts how many disease phenotypes 

can be explained by the disease; however, it also takes into 

account phenotype prevalence among all diseases repre-

sented in the Knowledge Base (measured as “specificity” 

below), as well as the confidence of connecting a given 

phenotype to a given disease when traversing the process 

hierarchy (expressed as “path weight” below). The specific-

ity of a phenotype is given by

where Nd is the number of diseases that the phenotype is 

connected to in the network. The path weight of a (shortest) 

path from a phenotype to a disease in the network is

where N is the number of links traversed through the pro-

cess hierarchy. In the special case where a phenotype is a 

gene-associated disease itself, the path weight score is set 

to 1. The maximum path length when traversing the process 

hierarchy is 4. The total score for a given gene/disease 

combination is then computed as the sum over all pheno-

types connected to the disease through at least one path:

Note that the score only depends on the connected disease 

and will be the same for all genes that are associated with it.

The algorithm consists of the following steps:

1. 	Given genes coming through the filter cascade, deter-

mine set D of diseases correlated or caused by it.

2. 	From any given phenotype, determine shortest path(s) 

to a disease in D under the condition the path may 

not contain other diseases in D unless it corresponds to 

the given phenotype, and the last link in the path is a 

phenotype-disease relationship.



4 	�  Variant Analysis: Phenotype-Driven Ranking filter

Figure 2 - B: Disease-gene pair ranked by the score generated using phenotype-disease relationship

Figure 2 - C: Network 
diagram showing gene-
disease-phenotype rela-
tionships

Figure 2 - A: Phenotype-Driven Ranking 
filter showing user entered phenotypes
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3. 	For a given disease in D, collect all paths connecting 

that disease to a phenotype, compute the total score 

above, and combine all paths into a network that is 

displayed.

Gene/disease pairs are then annotated with the type of 

relationship, i.e., whether they are causal (using OMIM) or 

represent an observed correlation, as well as by mechanism 

of inheritance if known. Gene/disease pairs are listed in 

a table and rank-ordered by their score (Figure 2 - B). For 

context and exploration, displayed networks also show 

paths connecting the same gene to other inferred diseases 

as well as to other genes connected to the displayed disease 

nodes (Figure 2 - C).

Benchmarking
In a benchmarking study, we used 29 cases with rare, 

congenital abnormalities from Inova Translational Medicine 

Institute (Fairfax, VA). The disease-causing variant for all 

these cases was previously identified. We used Ingenuity 

Variant Analysis to annotate and filter variants to a short list 

of rare, deleterious variants based on best practice guide-

lines using the Common Variants and Predicted Deleterious 

filters. The variants in this list were further filtered and 

ranked by likelihood of inferred diseases that are charac-

terized by input phenotypes, using the Phenotype-Driven 

Ranking filter. This filter sorts genes and variants using 

phenotype-disease-gene relationships, as explained above. 

Furthermore, genes and variants are secondarily sorted 

using variant classifications and the table also lists the mode 

of inheritance when available, so that a reviewer can pick 

the most likely causal variant between two variants with the 

same score. In 22 out of the 29 cases (76%), the disease 

that was previously diagnosed and reported by the clini-

cians, along with the gene/variant linked to it, was correctly 

identified using the Phenotype-Driven Ranking filter. In 20 

out of the 22 solved the causal variant ranked among the 

top 5 variants on the list. 

 

The Phenotype-Driven Ranking filter in Ingenuity Variant 

Analysis uses phenotypes to infer and rank matching dis-

eases and enables prioritization of disease-causing variants 

from whole genome and exome sequence data for individu-

als with genetics disorders. This enables fast and accurate 

disease prediction based on clinical signs and symptoms 

observed alongside genotype information.
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Variant Rank Percentage of solved cases

1 60

Top 5 90

Top 10 96




