

Installation Guide:

Shannon Human mRNA Splicing Pipeline

Pre-installation requirements: Either CLC Genomics Workbench or CLC Genomics Workbench and CLC Genomics server. Perl and gcc were previously required, however the plugin now contains a compiled binary to alleviate the need for those two dependencies.

Summary of changes in version 2.0

- Runs on Windows Vista, 7, or 8 (64 bit)
- Is approximately 12 times faster (analyze complete genomes in 10-15min)
- Handles indels (beta)
- Does gene set overrepresentation analysis (pathway analysis)
- Preset filters to simplify post-run analysis
- Updated to include RefSeq gene annotations

Standalone CLC Bio Genomics Workbench Version (Server license or support either undesired or unavailable)

- 1. Open CLC-Bio Workbench and select the "Plug-ins" button from the toolbar
- 2. Uninstall previous version(s) of plug-in, if present
- 3. Click 'install from files'
- 4. Select "ShannonHumanSplicingPipelineClient.cpa" software and click install
- 5. Necessary files containing genomic annotations (Ensembl gene, RefSeq, dbSNP, and hg reference sequence) must be installed for use by the main pipeline. Like the software, these plug-ins are available at the CLC Bio website as part of your purchase. There are separate 'dependencies' plug-ins for each genome build available. Currently, dependencies plug-ins are available for hg18/NCBI36 and hg19/GRCh37.
 - If you intend to examine variants that are mapped to hg19 coordinates, browse computer and select "ShannonPipelineDependenciesHG19" (2 Gb) and click install.
 - If you intend to examine variants that are mapped to hg18 coordinates as well as hg19, the file "**ShannonPipelineDependenciesHG18**" (2 Gb) must be installed in the same manner.

- If variant data sources are mixed, ie. from both hg18 and hg19, both "ShannonPipelineDependenciesHG18" and "ShannonPipelineDependenciesHG19" must be installed.
- Keep in mind that at least one dependencies file must be installed for the pipeline to function. Otherwise an error is generated at run time.
- 6. Restart Genomics Workbench to complete installation

Installation of Genomics Workbench Client-Genomics Server Version (both CLC Workbench and Server licenses are active)

 First, install the CLC Bio Workbench version - as outlined above - under the heading "Standalone Client Version". It is <u>not</u> necessary to install

"ShannonPipelineDependenciesHG18" or

"ShannonPipelineDependenciesHG19" on the client Workbench if you never intend to use the client computer to run the pipeline. (ie: every run will take place on the server). If you want to run the Shannon pipeline computations on both the Workbench or the server, then dependency files must be installed on the respective computers. The "Dependencies" plug-ins must be installed on the Workbench when calculations are performed locally (without running the software on the server).

- 2. Ensure the CLC-Bio Genomic Server is running. For more instructions on how to set up and access the server, see CLC-Bio's Genomics server documentation
- 3. Access the server through your web-browser and log in to the Server
- 4. Select the Plug-ins option in the Admin tab
- 5. Uninstall any previous version(s) of the Shannon pipeline for human splicing mutations plug-in
- 6. Necessary files containing genomic annotations (Ensembl gene and dbSNP, hg reference sequence) must be installed for use by the main pipeline on the Genomics Server. Like the software, these plug-ins are available at the CLC Bio website as part of your purchase. There are separate 'dependencies' plug-ins for each genome build. Currently, dependencies plug-ins are available for hg18/NCBI36 and hg19/GRCh37.
 - The dependencies plug-ins are large (2Gb each). By default, the CLC-Bio server does not allow plug-ins of this size to be installed. To change the settings, under the Main configuration tab->HTTP settings: modify the 'Max upload size (MB)' value to ≥ 3000 Mb.
 - If you intend to examine variants that are mapped to hg19 coordinates, browse computer and select " **ShannonPipelineDependenciesHG19**" (2 Gb) and click install.
 - If you intend to examine variants that are mapped to hg18 coordinates as well as hg19, the file "**ShannonPipelineDependenciesHG18**" (2 Gb) must be installed in the same manner.
 - If variant data sources are mixed, ie. from both hg18 and hg19, both "ShannonPipelineDependenciesHG18" and "ShannonPipelineDependenciesHG19" must be installed.
 - Keep in mind that at least one dependencies file must be installed for the pipeline to function. Otherwise an error is generated at run time.

- 7. The main pipeline plug-in can now be installed. Browse computer to select "ShannonHumanSplicingPipelineServer.cpa" and click install.
- 8. If you have not already set any 'File system locations' for your server as outlined in CLC-Bio's server documentation, this must be done before the Shannon pipeline can be run. The Server has to have a CLC Bio folder on your hard drive where CLC objects and files are defined in advance of running the plug-in. Please refer to the CLC Bio Genomics Server installation guide for details on Server set up.

* Requirements and validation

The Cytognomix Shannon human mRNA splicing plug-in runs in standalone mode on the CLC Genomics Workbench V6.5 or with both the Workbench and CLC Genomics Server V6.5 (as a standalone server using grid). Released for the following 64 bit operating systems: **Windows (Vista, 7, 8)**, **Linux,** and **MacOSX**. This plugin requires at least 4Gb of RAM.

Support

CLC Bio Customer Support (primary)

CytognomiX

Trial/Web Server Login

The trial version of the server does not report all of the results that the fully licensed version does:

-Any number of variants may be submitted.

-The set of variants shown is <u>randomly selected</u> from a larger set of results. -Up to 20% of all possible results are shown.

-Only a few inactivating or leaky variants are returned.

-No more than 500 variants with changes in information content are displayed. -User access is anonymous, but IP addresses are tracked.

-The only Server function that is enabled is the Shannon pipeline plugin.

-The full version of the plugin contains none these limitations.

*Please Note: The server may be accessed without completing steps 1 and 2 below. The server contains results generated from the full version of the plugin which can be viewed without installation of the trial. However, if you would like to examine your own variants (or analyze the sample variants in the _SAMPLE-VARIANTS folder) on the trial server, all of the following steps are required:

1. Uninstall any previously installed Shannon Human Splicing Pipeline plugins.

2. Download and install 'CytognomixShannonPipelineClient.cpa' (name: Cytognomix Shannon Pipeline Client) in your previously installed Genomics Workbench.

- 3. Connect to the server
 - From within the Genomics Workbench, select file->CLC Server Login
 - If necessary, expand the advanced option to uncover 'Server host' and 'Server port'
 - Login using the following credentials.
 - User name: trial
 - Password: Cytognomix
 - Server host: 208.75.74.35
 - Server port: 7777
 - Click login

4. If desired, you can view some results generated by the full version of the plugin in the folder _SAMPLE-RESULTS-FROM-FULL-VERSION.

5. Your own data may be imported at this time. For instructions regarding the import process, please consult the Shannon Human Splicing Pipeline documentation on how to import either VCF or Shannon pipeline basic variant. For simplicity, the steps given below will use pre-imported data that are already resident on the Trial Server.

6. In the Genomics Workbench toolbox, expand Shannon Human Splicing Pipeline and double click 'Launch Pipeline'.

7. A wizard will pop up. Select CLC Server and click next.

8. Expand the folder _SAMPLE-VARIANTS to view its contents. Select 'Pre-Importedhg19-Variants-Ready-to-be-examined-by-the-Shannon-Pipeline' and move it to the 'Selected Elements' region of the wizard. Click next.

9. The pre-imported variants are hg19, so ensure hg19 is selected in 'Genome Build' and click next.

10. The results of the pipeline should be saved, this will be selected by default so click next on the Result handling wizard screen.

11. Create a folder to store your results. To do this, highlight the Trial_Server_Data folder and press the +folder button. Name the folder whatever you would like. Highlight your newly created folder and click finish to begin your run.

12. With this data (approximately 5000 variants on 3 different chromosomes), the run will take approximately 10 minutes to complete (if using the pre-imported variants), so be sure to check back to review your results.

Shannon Human Splicing Pipeline

Quick Start

This page contains information on how to run the plugin. For an overview of information theory please view the "Review" section.

Note: This guide assumes that the Shannon Human Splicing plugin has been installed. For installation help, please consult the installation guide (above).

Importing Data

Before analysis can take place, input data containing variants is needed. The data to be examined must be in one of the two formats described below. Version 2.0 introduces a <u>beta</u> version of indel analysis* (please view "Note on indel analysis" section below).

Import option 1 - VCF files (recommended method)

VCF files may be imported. The file must be a standard VCF file with at least the first five columns present. The necessary fields are CHROM, POS, ID, REF, ALT in that order. File headers are not necessary and will be ignored if present. When specifying indels, the reference nucleotide field must include the base preceding the event, which must also be reflected in the position field.

For example, the following lines are acceptable:

5 148835675 . C T

5 148989410 ID1 A G,T

5 148989435 CAGT C (deletion)

5 148989435 C CAAA (insertion)

To import the data, click the import button on the taskbar in the CLC-Bio workbench and select 'Standard Import'. Select the file to be imported and **select force import as type: Shannon Pipeline VCF Format**.

		Import										
Choose where to run	Choose which files should be in	nported										
Choose files to import	Variants \$											
2. Choose files to import	 ✓ Flash Player GIMP ☑ Macintosh HD Network Desktop Documents ① uwo 	 Applications ApplicatioParallels) bin CLC_Data Desktop Documents Downloads Dropbox Library Movies Music Pictures Public uwo Variants VirtualBox VMs 	MyVariants.txt MyVariants.vcf MyVariants.vcf	Name MyVariants.vcf Kind Size 291 bytes Modified 17/01/13 4:44 PM								
20	VITUAIBOX VMS Format: All Files Format: All Files											

Figure 1. A demonstration of the Option 1 (VCF) import process. Select force import as: Shannon Pipeline VCF Format

Import option 2 - Variant tracks

CLC-Bio variant tracks can be used as input for the pipeline. If the variants to be examined are already located within a variant track object in the CLC-Bio environment, no further import is necessary. Otherwise, a VCF file can be imported as a variant track.

To import a VCF file as a variant track, click the import button on the taskbar in the CLC-Bio workbench and select 'Tracks'. Under type of files to import, select VCF. You will be asked to choose the file to be imported as a variant track as well as a reference track. For additional help regarding generating a reference track, please refer to the CLC-Bio documentation covering track import. When executing the Shannon pipeline with track input, the run will take slightly longer because the track is exported and imported behind the scenes to reorder data.

CytognomiX

1. Choose where to run	parameters
2 Select files to import	port
Z. Select mes to import Type o	f files to import: VCF 🔹
Files to Look	o import: In: Example Variants.vcf
File <u>M</u> Files	Lame: My/Jariants.vcf of <u>Type:</u> VCF (.vcf)
?	← Previous → Next ✓ Finish X Cancel

Figure 2. A demonstration of the Option 2 (Track) import process. The imported variant track may be used as input for the Shannon pipeline.

Running multiple samples together in a single run

The ID field in a VCF file can be used as a sample label to facilitate separating the samples after the run. To label all variants from the same sample, place the name of the sample in the ID field in a VCF file. Do this for all samples and place them in the same VCF file. Import the single VCF file containing multiple samples using Shannon Pipeline VCF Import. This enables multiple samples to be analyzed in a single run. Table filtering can then be used when the run is complete to examine results of each sample separately.

Example data

Example data was automatically placed in the directory "ExampleData_ShannonPipeline" upon plugin installation. Three descriptively named objects can be found in the directory:

- <u>1. Pre-Imported-hg19-Variants_Ready-to-be-examined-by-the-Shannon-Pipeline</u>: The result of either importing file 2 using Option 1 in the import section above or importing file 3 using Option 2. This object may be used to test the Shannon Pipeline.
- <u>2. SampleBasicFormat Would-be-imported-by-forcing-import-as-Shannon-Pipeline-Basic-Format.txt</u>: This is an example of the Shannon Pipeline Basic format before importing.

• <u>3. SampleVCF_Would-be-imported-by-forcing-import-as-Shannon-Pipeline-VCF.vcf</u>: An example of the Shannon Pipeline VCF format before importing

This example data was included to act as a starting point for first time users of the plugin. If it is no longer needed, the ExampleData_ShannonPipeline may be deleted. If the ExampleData_ShannonPipeline folder was accidentally deleted, please reinstall the plugin as the example files are placed in the directory upon installation.

Running the pipeline

After importing your data and clicking on "Launch Shannon Pipeline" (located in the toolbox, under Shannon Human Splicing Pipeline), a wizard will appear asking whether you would like the analysis to take place on the server or the workbench. Each step of this wizard is described below:

- Step 1: Select the desired analysis location (workbench, CLC server, or grid). If using the trial server (only for trial version of the plugin), select CLC Server.
- Step 2: Select your imported variant data (Data must be a track or imported using one of the methods above. See the importing and example data sections above for help. The file Pre-Imported-hg19-Variants_Ready-to-be-examined-by-the-Shannon-Pipeline in the ExampleData_ShannonPipeline can be used in this step if you have not imported your own data yet.)
- Step 3: Select the desired reference genome (hg19 or hg18) and file for exome annotation (RefSeq or Ensembl 66).
- Step 4: Select whether you would like to save or open your results. We suggest that you select save and check "make log". Delta R_i and Final R_i plot checkboxes are available here to enable or disable their construction.
- Step 5: Select your desired location for the results data
- Upon clicking finish, the pipeline will begin analysis
- Only one analysis can be run at a time on the CLC Genomics Workbench. On the CLC Server, multiple analysis are queued and then run consecutively. Using the licensed grid version, multiple analyses can be run simultaneously.

A pop-up window indicates the run is "Done" when complete.

Your results are located in the directory specified in the final step of the Launch Shannon Pipeline wizard. They include: tabular output split into 4 files (complete, inactivating, leaky, and cryptic), plots for every chromosome and a genome-wide Manhattan style plot which includes all the variants.

Displaying results

In the navigation area of the workbench, double click a tabular or plot results object. The objects will be displayed in an appropriate editor.

*Note on indel analysis:

This is a beta version with a known issue which can generate incorrect R_i values (when examining indels). We estimate correct R_i values will be generated for ~95% of indels. The issue is related to incorrect shifting of coordinate systems generally related to

insertions/deletions directly overlapping a splice site. Therefore, please keep in mind that some R_i values related to indels may be incorrect.

CytognomiX

Shannon Human Splicing Pipeline

Tables

v New Save Import Export Graphics Print	Und	o Redo Cut C	opy Paste	Delete	Workspace Plug-ins	Download							1	fit Wi	idth 100% Pan Selection Zoom In Z
Navigation Area	田	Complete Var	i ×												
								Marine .						_	Table Settings
— 🛄 Complete Variant Informat 📥	R	ows: 7,073	Effect	of var	riants on Ri and	other relev	ant informat	ion	Filter:				(Ð	N ~ 43
— 🖽 Inactivating Variant Inform —														,	Column width
🗕 🖽 Leaky Variant Information 📑	C	Coordinate	Ri-initial	Ri-final		Gene Nam		Location	Loc Rel	Die	Loc of ne	Riof	Countic Ri re		Manual
Cryptic Variant Information	5	24171373 +	0.16	18.46	-18.62 DONOR	C5orf17	CRYPTICSITE	INTRONIC	3'-ELANKING	17	-	-	-		Manual
Genome Wide Manhattan f	7	27135485 +	-9.08	9.56	18.63 DONOR	HOTAIRM1	CRYPTICSITE	INTRONIC	3'-FLANKING	193	27135292	6.95	GREATER	-,	 Show column
- Chr 1 Plot (Delta Ri)	9	1409541 +	-1.19	0.31	1.50 DONOR	CACNALB	CRYPTICSITE	INTRONIC	3'-FLANKING	4	140954190	8.19	LESS		
Chr 2 Plot (Delta Ri)	10	1170597 +	-1.14	0.36	1.50 DONOR	ATRNL1	CRYPTICSITE	INTRONIC	3'-FLANKING	4	117059758	7.96	LESS		
🕂 🖑 Chr 3 Plot (Delta Ri)	10	98807726 -	-0.91	1.91	2.82 ACCEPTOR	ARHGAP19	CRYPTICSITE	INTRONIC	3'-FLANKING	134	98807592	3.86	LESS		Coordinate
🕂 🖑 Chr 4 Plot (Delta Ri)	11	17548541 -	2.05	3.31	1.26 ACCEPTOR	USH1C	CRYPTICSITE	INTRONIC	3'-FLANKING	183	17548358	9.62	LESS		Strand
🕂 🖑 Chr 5 Plot (Delta Ri)	11	5345008 +	1.58	-1.05	-2.63 DONOR	OR51B6	CRYPTICSITE	INTRONIC	3'-FLANKING	17	5344991	0.06	GREATER		
🗕 🖑 Chr 6 Plot (Delta Ri)	12	10332225 -	1.84	-9.04	-10.88 ACCEPTOF	RP11-65	CRYPTICSITE	INTRONIC	3'-FLANKING	75	10332150	5.2	LESS		▶ Ki-IIILIAI
- 🖑 Chr 7 Plot (Delta Ri)	14	21464681 -	8.69	9.78	1.09 ACCEPTOR	RP11-84	CRYPTICSITE	INTRONIC	3'-FLANKING	191	21464490	15.25	LESS		🗹 Ri-final
🕂 🖑 Chr 8 Plot (Delta Ri)	15	91474977 +	-3.51	0.22	3.73 DONOR	UNC45A	CRYPTICSITE	INTRONIC	3'-FLANKING	167	91474283	7.41	LESS		ARI
🕂 🖑 Chr 9 Plot (Delta Ri)	16	3598755 -	-7.40	3.48	10.88 ACCEPTOR	NLRC3	CRYPTICSITE	INTRONIC	3'-FLANKING	1	3598754	8.17	LESS		
Chr 10 Plot (Delta Ri)	17	10351692 -	2.93	1.91	-1.03 ACCEPTOF	MYH4	CRYPTICSITE	INTRONIC	3'-FLANKING	248	10351444	2.67	GREATER		🕑 Туре
- 🖑 Chr 11 Plot (Delta Ri)	17	73816184 -	4.80	2.80	-2.01 ACCEPTOF	AC08728	CRYPTICSITE	INTRONIC	3'-FLANKING	49	73816135	3.15	GREATER		🗹 Gene Name
- 🐥 Chr 12 Plot (Delta Ri)	17	73816190 -	-10.29	1.38	11.67 ACCEPTOR	AC08728	CRYPTICSITE	INTRONIC	3'-FLANKING	55	73816135	3.15	LESS		- Location
Chr 13 Plot (Delta Ri)	20	3674074 -	-0.67	0.78	1.44 ACCEPTOR	SIGLEC1	CRYPTICSITE	INTRONIC	3'-FLANKING	295	3673779	3.32	LESS		Location
Chr 14 Plot (Delta Ri)	22	30857538 -	0.86	-0.51	-1.37 ACCEPTOF	SEC14L3	CRYPTICSITE	INTRONIC	3'-FLANKING	71	30857467	8.37	LESS		🗹 Location Type
- Chr 15 Plot (Delta Ri)	X	13337617 +	1.70	5.30	3.59 DONOR	GS1-600	CRYPTICSITE	INTRONIC	3'-FLANKING	4	13337613	2.03	GREATER		Loc. Rel. to exon
🍊 (hr 16 Plot (Delta Ri) 🔻	X	1541330	0.69	2.89	2.20 ACCEPTOR	F8	CRYPTICSITE	INTRONIC	3'-FLANKING	278	154132800	7.0	LESS		
	1	2127985	-1.48	0.02	1.50 DONOR	RP11-33	CRYPTICSITE	INTRONIC	5'-FLANKING	-42	212798575	6.6	LESS		Dist. from nearest nat.
<enter search="" term=""></enter>	1	1522857 +	-6.62	1.13	7.75 ACCEPTOR	RP1-14N	CRYPTICSITE	INTRONIC	5'-FLANKING	-138	-	-	-		✓ Loc. of nearest nat. site
	1	15516/8 +	0.24	-1.22	-1.45 ACCEPTOR	RP11-26	CRYPTICSITE	INTRONIC	5'-FLANKING	-/1	155168193	2.15	LESS		Ri of pearest pat site
Foolbox 🛛 🔀	1	1551/20 +	2.52	1.43	-I.U9 ACCEPTUR	RP11-20	CRYPTICSITE	INTRONIC	5 -FLANKING	-272	1551/2913	-0.1	GREATER		in or nearest nat. site
Shappap Humap Splicing Bingling	1	2409001	1.83	10.80	-18.63 DUNUR	KGS/	CRYPTICSITE	INTRONIC	5 -FLANKING	-83	240966203	3.72	LESS		Cryptic Ri relative to na
	2	1522142	4.01	0.50	-2.69 ACCEPTOP	AC00994	CRYPTICSITE	INTRONIC	5 -FLANKING	-100	152214274	12.24	UREATER		✓ rsID if available
	2	20120127 +	1 01	0.30	10.88 ACCEPTOP	DIECI	CRYPTICSITE	INTRONIC	5'-FLANKING	-1	20120224	0.11	GDEATED		
Malagular Biology Tools	2	9807660	-1.24	2 /0	3 73 DONOP	CAMKI	CRVPTICSITE	INTRONIC	5'-FLANKING	-1 /0	0807808	4.37	IESS		Average neterozygocity
DIACT	3	58368239 ±	4 75	2.49	-2.16 ACCEPTOR	PXK	CRYPTICSITE	INTRONIC	5'-FLANKING	-120	58368240	15.23	LESS		Input coordinate
DLAST	4	1562814 +	0.80	-0.75	-1.55 ACCEPTOR	AC09746	CRYPTICSITE	INTRONIC	5'-ELANKING	-27	156281436	11.93	LESS		Input variant
NGS CORE TOOIS	7	43590042 +	0.45	3.58	3.13 ACCEPTOR	HECW1	CRYPTICSITE	INTRONIC	5'-ELANKING	-1	43590043	7.59	LESS		
Track Tools	7	1072043 +	1.84	4.07	2.23 ACCEPTOR	DUS4L	CRYPTICSITE	INTRONIC	5'-FLANKING	-126	-	-	-		✓ Input ID
Resequencing Analysis	7	6449756 -	-1.32	0.28	1.60 DONOR	DAGLB	CRYPTICSITE	INTRONIC	5'-FLANKING	-4	6449760	7.41	LESS		Select All
Transcriptomics Analysis	8	15588173 +	-8.37	2.51	10.88 ACCEPTOR	TUSC3	CRYPTICSITE	INTRONIC	5'-FLANKING	-1	15588174	12.55	LESS		
Epigenomics Analysis	10	44140111 +	9.16	11.56	2.40 ACCEPTOR	ZNF32-AS3	CRYPTICSITE	INTRONIC	5'-FLANKING	-186	44140297	-15.0	GREATER		Deselect All
De Novo Sequencing	10	75672761 -	0.21	11.38	-11.59 DONOR	C10orf55	CRYPTICSITE	INTRONIC	5'-FLANKING	-39	75672800	5.75	LESS		
WORKTIOWS	11	74556113 -	1 10	6.00	1 60 DONOR	YRRA1	CRVPTICSITE	INTRONIC	5'-FLANKING	-1	74556117	6.54	IESS	-	

Figure 1. An example of a table generated by the pipeline. Columns which are not of immediate interest can be temporarily removed by unchecking the checkboxes within the sidebar on the right.

The tables contain all information gained through the information analysis on variants. Four tables are generated each time the pipeline is executed, these are:

1. Complete Variant Information

All sites exhibiting a delta R_i of at least 1.0 bits (and less than -1.0 bits) are included here

2. Inactivating Variant Information

Includes natural site variants with an original R_i greater than 1.6 bits and which drop below that value after the variant is introduced

3. Leaky Variant Information

Natural site variants which experience a drop in R_i after the variant is introduced

4. Cryptic Variant Information Includes only cryptic site variants

Each row of the table represents a single variant. The meaning of each column is described below:

1. Chromosome Chromosome containing the splice site experiencing a change in R_i

2. Splice site coordinate Location of the splice site experiencing a change in R_i

3. Strand Displayed as "+" for positive and "-" for negative strand

4. R_i-initial R_i of splice site before introducing the variant

5. R_i-final R_i of splice site after introducing the variant

6. Delta R_i

The change in R_i before and after introducing the variant

7. Type

The site is either an acceptor or a donor. Displayed as "ACCEPTOR" or "DONOR"

8. Gene Name

Name of the gene closest to the location of the variant. If multiple genes overlap the coordinate of the variant, they will all be appear in a comma delimited list.

9. Location

The site is either natural or cryptic. Displayed as "NATURALSITE" or "CRYPTICSITE"

Columns displayed only for cryptic site variants

10. Location Type If the location of the variant is within an exon it is "EXONIC". Otherwise, it is "INTRONIC"

11. Location relative to exon

If the location of the variant is "INTRONIC" and within 300 base pairs of an exon, depending on its location relative to the exon it is "3'-FLANKING" or "5'-FLANKING"

12. Distance from nearest natural site

If the location of the variant is within 1000 base pairs of a natural site, the number of base pairs separating the two sites is shown here

13. Location of nearest natural site

If the location of the variant is within 1000 base pairs of a natural site, the coordinates of the nearest natural site are shown here

14. R_i of nearest natural site

15. Cryptic R_i relative to natural site R_i If a cryptic site has a higher R_i than the nearest natural site after the variant is introduced it is "GREATER", otherwise it is "LESS"

Additional columns displayed for all variants

16. rsID if available dbSNP135 is examined to determine if the variant in question is a known variant. If it is found within dbSNP135, its rsID is displayed

17. Average heterozygosity If the variant is a known SNP in dbSNP135, its average heterozygosity is displayed

18. Variant coordinate Location of SNP which was examined by the pipeline

19. Input variant Reference and variant nucleotides of SNP

20. Variant type Denotes the variant as an 'SNV' of 'Indel'.

21. Input ID ID as specified in the 'ID' column of input track or VCF file followed by a unique number

CytognomiX

Description (Mon Jan 14 16:18:18 EST 2013)
er: uwo
ameters:
Reference Genome = HG19(GRCh37) Ensemble version = Ensembl 66 dbSNP version = dbSNP-135 Show donors = true Show acceptors = true Show acceptors = true Show natural sites = true Show cryptic sites = true Show positive strand = true Show negative sites = true Show delta ri plots = true Show total ri plots = true Total run time = 28 minutes, and 23 seconds Skipped variants due to incorrect reference nucleotide = none Results are generated using a patented method. United States Patent # = 5,867,402 Authors = Ben C. Shirley, Eliseos J. Mucaki, Peter K. Rogan Converight = Cytogenerity Inc. (2012)
mments: Edit
Comment
ginates from:
InputVariants_5013_2013-0-14-35-29 (history)
Show History (Press % to split view) 1 element(s) are selected

Figure 2. An example of table history generated by the pipeline. While the table editor is open (such as in figure 1), select history at the bottom of the screen. Genome version, Ensembl version, filer options, run time, skipped variants, and the input file for the appropriate pipeline execution can be found here.

Shannon Human Splicing Pipeline

Plots

Figure 1. An example of a plot generated by the pipeline.

The plots provide a visual representation of the delta R_i for each variant. The genome wide, Manhattan style plot shows variants across the whole genome. Plots for individual chromosomes provide a closer look at the effect of the variants on a single chromosome.

Hovering the mouse over a plot point will produce a tool-tip containing the following information about the variant:

Chromosome Coordinate Delta R_i (change in R_i before and after variant is introduced) Final R_i (R_i after variant is introduced) rsID from dbSNP130/135 if available

CytognomiX

No Description (Mon Jan 14 16:18:18 EST 2013)	
User: uwo	
Parameters:	
Reference Genome = HG19(GRCh37) Ensemble version = Ensembl 66 dbSNP version = dbSNP-135 Show donors = true Show acceptors = true Show natural sites = true Show royptic sites = true Show positive strand = true Show negative sites = true Show delta ri plots = true Show total ri plots = true Total run time = 28 minutes, and 23 seconds Skipped variants due to incorrect reference nucleotide = none Results are generated using a patented method. United States Patent # = 5,867 Authors = Ben C. Shirley, Eliseos J. Mucaki, Peter K. Rogan Copyright = Cytognomix Inc. (2012)	,402
Comments:Edit No Comment	
Originates from:	
InputVariants_5013_2013-0-14-35-29 (history)	
Show History (Press % to split view) 1 element(s) are s	selected

Figure 2. An example of plot history generated by the pipeline. While the plot editor is open (such as in figure 1), select history at the bottom of the screen. Genome version, Ensembl version, filer options, run time, skipped variants, and the input file for the appropriate pipeline execution can be found here.

Shannon Human Splicing Pipeline

Tracks

Four BEDGRAPH tracks are generated each time the pipeline is executed, these are:

- 1. customtrack-positive-acceptor-deltaRi (acceptor sites on the positive strand)
- 2. customtrack-negative-acceptor-deltaRi (acceptor sites on the negative strand)
- 3. customtrack-positive-donor-deltaRi (donor sites on the positive strand)
- 4. customtrack-negative-donor-deltaRi (donor sites on the negative strand)

Each row of a track represents a single variant. Each track has a header automatically included and are ready to be viewed using a genome browser. The header hides other tracks and displays ensGene (Ensembl Gene Predictions).

Example row:

chr1 8863452 8863452 14.7147693634033

On chromosome 1, coordinate 8863452 the predicted result of the input variant is an R_i increase of 14.71 bits. When viewed in a genome browser, a vertical line depicts the change in R_i .

Shannon Human Splicing Pipeline

Filtering Tips

A method to further reduce the number of variants found in Shannon pipeline results is described here. For additional specifics and explanations of the filters please refer to the following paper: <u>Shirley BC, Mucaki EJ, Whitehead T, Costea PI, Akan P, Rogan PK.</u> Interpretation, stratification and evidence for sequence variants affecting mRNA splicing in complete human genome sequences. Genomics Proteomics Bioinformatics. 2013 Apr;11(2):77-85.

In general, further filtering is not required for inactivating or leaky variants. All cryptic site variants are reported, however some of these variants are less likely to alter splicing. The following steps describe a method to filter out those variants and keep only variants most likely to functionally relevant. To perform the following filtering steps, it is expected that you have the 'Cryptic Variant Information' table open in the CLC-Bio Workbench. Filtering options are located near the top-right of the table. In particular, click the arrow labelled 'Advanced filter' on mouseover to access the filtering options described below. In the 'Advanced filter' display, you will see two dropdown boxes. The first box represents the columns in the table, the second allows several filtering options to be applied. Very similar filters can also be applied outside of the workbench in spreadsheet software.

1. Eliminate cryptic sites which experience a decrease in R_i

<u>delta Ri > 0</u> (note: in the workbench, 'delta' will appear as a triangle)

Select delta R_i from the column dropdown box in 'Advanced filter' options. In the second box, we are interested in thos variants which results in an increased in R_i , so we select '>'. Finally, in the text field we enter 0 and click the apply button to execute the filter.

It is generally assumed that natural sites are used unless the natural site is weakened or a nearby cryptic site is strengthened. This filter removes those variants which contribute to a decrease in R_i of a cryptic site as it is unlikely this will contribute to deleterious splicing.

2. Eliminate cryptic sites weaker than a nearby natural site

Cryptic Ri relative to nat. = GREATER

To create a new filter while preserving previous filters, click the green plus sign button adjacent to the current filter.

As a result of similar reasoning to filter 1, we are generally only interested in those cryptic sites predicted to be stronger than a nearby natural site.

3. Eliminate cryptic sites too far away from an exon

Filters 1 and 2 will greatly reduce the number of rows in the table. If additional filtering is required, cryptic sites may be eliminated which are not sufficiently close to an exon. If a cryptic site is more than 300bp away from an exon, it is quite unlikely the cryptic site will be used.

Two filters to be applied separately are required for this step. First, the following filter can be applied to eliminate variants not within 300bp of an exon:

Loc. Rel. to exon contains FLANKING

This filters works because a variant will only be annotated as 3'-FLANKING or 5'-FLANKING if it is intronic and within 300bp of an exon. After all the filters up to this point have been applied,

intronic cryptic sites most likely to be functionally relevant will be displayed. Exonic cryptic sites must also be taken into account however. Exonic cryptic sites are not annotated as 3'-FLANKING or 5'-FLANKING because they are within the exon. To display exonic sites, the 'FLANKING' filter should be removed and the following filter can be used: Location Type = EXONIC

Others filters which may be of interest

rsID if available doesn't contain rs This filter will display variants not present in dbSNP135.

Acceptable cryptic site distance from the nearest natural site can be narrowed if desired. <u>Dist. from nearest nat. site abs value < 100</u> Note that 100 can be changed to any value under 300.

Shannon Human Splicing Pipeline

FAQ

This FAQ will be updated with answers to common questions.

Q: Does the Shannon pipeline handle indels? A: Yes, but please keep in mind that the indel analysis portion of the plugin is currently in the beta stages of development.

Q: How far away from a cryptic site does the pipeline look for a natural splice site? A: Currently, the pipeline looks up to 1000bp from the cryptic site. Additional annotation (whether the cryptic site is 3' or 5' flanking in relation to the exon and distance from natural site) will be applied if a cryptic site is within 300bp of a natural site.

Q: How fast is the Shannon Human Splicing Pipeline? A: In our testing, the pipeline averaged 3343 variants/min on an I7-based server. 100,000 variants took 37min to analyze. Increasing the number of variants leads to an approximately linear increase in computation time (314,637 variants in 87min).

Q: If something has gone wrong, how can I find out more about the problem? A: An object ServerStdErrLog.log will appear with the output objects if an error was encountered during the run

Q: If my variant is on the complementary strand, will the Shannon Human Splicing **Pipeline process it?** A: Yes, the variant is complemented to match the substitution on the reference sequence.

Shannon Human Splicing Pipeline

Pathway Analysis

Overview

This is an add-on module for the Shannon Pipeline. It analyzes results from the Shannon Pipeline's output, specifically the gene annotations, and performs a pathway over-representation analysis.

The over-representation analysis performs a one-tailed Fisher's Exact Test on unique gene hits from a Shannon Pipeline output table. It will only include those genes that are within the Ensembl gene database, so as to exclude mRNA transcripts from the analysis.

The user is required to input two parameters in order for the analysis to be run. The user must first provide the number of unique genes present within the global genome the test-data was derived from. The default value is 20,750, the current number of coding genes estimated to be within the human genome by the Ensembl Genome Annotation System(1). Cancer genome gene numbers may differ significantly from this value, as such users who are able to estimate their genomes global gene count differs from the standard human genome should change this value. Changing this value will result in a change of the significance of results.

The second parameter the user is required to provide is the significance level they wish to filter results at. It is recommended to be kept at 0.05, and not to be placed higher, as this could cause a great number of results to be produced which will be of less value to the user.

Module Input, and File Import

This module takes two different formats of input, either a Shannon Pipeline output table, or a text-file containing a list of genes. To use the Shannon Pipeline output table, upon selecting the Pathway Analysis option, just bring the table in question over from the left hand side of available inputs, to the right hand side indicating that you would like to run Pathway Analysis on this table.

In order to run the Pathway Analysis upon a text-file, you will need to import the file in question. First it is essential that the text-file is the correct format. It should contain a list of the genes you want to analyze, each on a separate line. Incorrectly named genes, or genes not separated by a new-line will not be examined by the pipeline.

To import the properly formatted file, click on *Import* in the top toolbar, or from the *File* menu, select *Import*. Select *Workbench* from the wizard that pops up, click on *Next*, then select the file in question from the file browser. You want the import type to be Automatic. Click through now until you can select *Finish*. Upon clicking *Finish* the wizard should close, and your file should be listed in your CLC Data folder.

In-Depth Guide to Running

Select *Pathway Analysis* from the available Shannon Pipeline modules, this should open a CLC bio Wizard. Ensure that Workbench is selected, then click *Next*. The next screen is where you will input the data you wish to analyze. The only inputs that the module will take are Shannon Pipeline output tables, and a new-line delimited list of genes, imported from a text-file.

NOTE: If you choose to analyze anything with an imported text-file, the Pipeline will ignore any filter options you input. Although the module will currently allow you to set filter options, if a text-file was selected the program will ignore all filter options set. If the user chooses one or more tables, all filter options will be preserved.

After bringing all inputs you want from the left column to the right column, select *Next*. The following page allows you to set certain parameters for the run. The three necessary parameters are the significance of the results, the number of genes you believe to be within your genome, and whether you would like to look at Natural sites, Cryptic sites, or both. If you select Natural sites or Cryptic sites, the program will ignore all inputs that don't match these criteria. This can concentrate the pool of results you are looking for. E.g., if you have a results table with 500 unique genes, but only 100 of those belong to Natural sites, if you select Natural sites, the program will treat your input as only those 100 unique genes, and not the complete set of 500.

The next set of input options ask you whether you would like to filter results by Ri values. This will allow the user to only look for those genes that are over-represented that match a certain initial and final Ri criteria. If the results match the criteria, they will be eligible for over-representation. Note: Unlike the filtering options above, even if a certain gene's variant's do not match the Ri threshold information, this will not exclude them from being included in the analysis, as they still contribute to genes that are present, and affect the over-representation analysis.

After setting all the necessary options, click *Next.* If you want the table to just be opened in the Workbench, and not save the results for later examination, select *Open*, followed by *Finish.* If however you wish to save the results, select *Save*, followed by *Next.* The final page will ask you where you wish the results to be saved, through a File explorer window. Once you have correctly entered the location, click *Finish*, and the module will begin analysis.

Exporting Results

Upon completing the Pathway Analysis, you will be presented with a table in the Workbench, containing all your results. The results are organized in the table by the Pathway in question, followed by the significance of its over-expression, followed next by the number of genes it found within this pathway, the number of genes in the pathway total, and a comma delimited list of the genes found.

Users may find that the table does not adequately allow them to see all results, or may wish to export the data in order to manipulate it further/extract specific results. To accomplish this simply click on the *Export* button in the top toolbar, or select *Export* from the *File* menu. In the window that pops-up select the name you wish to call the file, the location you would like the file to be exported to, and the format of the outputted file (it should be .txt by default). After inputting this information, select *Save*, this will begin the Export process.

Pathway Analysis FAQ

• Q: What is the run time for this analysis?

A: We have measured the analysis for 1,600,000 variants at 53 seconds. This number should increase in a roughly linear manner with the number of variants produced in a table.

• Q: What are the different input types for the module?

A: The module will run on either a Shannon Pipeline output table, or an imported textfile. The text-file that is to be imported must be formatted as a list of genes, with each gene name on a separate line. The gene names do not have to be unique, as the program will handle this.

• Q: How do I import a text-file?

A: Select *Import* from the top toolbar, or from the File menu. Ensure *Workbench* is selected, then click *Next*. On the next window, navigate to the file you wish to import, and ensure that the import type is selected as *Automatic*. Click through now until you hit *Finish*.

• Q: How do I export my results?

A: Select *Export* from the top toolbar, or from the File menu. In the window that appears, enter the name you wish the exported file to be call, the location you would like it to go, and the file type you would like to export as. It will be .txt by default. When this is completed, click *Save* and the file will begin exporting.

Shannon Human Splicing Pipeline

Preset Filtering

Overview

This is an add-on module for the Shannon Pipeline. It examines Shannon Pipeline output and filters it based on a preset standard filter, or by selecting individual options.

Selecting objects to be filtered

This module filters Shannon Pipeline output. Appropriate objects will be named "Complete Variant Information" if not renamed after pipeline execution. Double click on "Filter Pipeline Output" in the "Additional Pipeline Tools" subfolder within the "Shannon Human Splicing Pipeline" folder. After selecting the location in which the filtering will be executed, you will be asked to select a Shannon Pipeline results object. Multiple objects can be filtered simultaneously by placing multiple Shannon Pipeline results objects into the "Selected elements" window on the right side of the wizard.

Explanation of Filtering Options

Note: These filters define those variants to be preserved (not eliminated) in the resulting table. For example, filtering for all variants with initial R_i above 1.6 will result in a filtered table containing variants with initial R_i greater than 1.6.

A user can either filter output with their own criteria or using preset filters that have been created by Cytognomix. Combining the following filtering criteria in various ways will reduce the number of variants reported.

- Preset filters: A preset filter can be selected using the dropdown menu. When a filter is selected, all options below are automatically modified according to the selected preset. If desired, filters set automatically by selecting a preset filter can be manually modified. To reset all filters to default, select the preset "None".
- Filters based on Ri: Filters related to initial, final, and change in Ri values can be set here. For each of these numeric filters, you may filter for those values higher/lower than a specified value by selecting the appropriate option from the dropdown menu. If the option "Any" is selected, any value placed in the adjacent text box will be ignored. Otherwise, enter the desired value in the adjacent text box.
- Natural site change in R_i: You may filter for natural sites increasing in R_i or decreasing in R_i
- Novel and known variants: A known variant contains an rsID in the rsID column of Shannon Pipeline output. Filtering by novel variants will eliminate any variant with an rsID. Filtering by known variants will eliminate all variants without one.
- Average heterozygosity: Similar to the filters based on R_i, filters can be defined for average heterozygosity above or below a specified value.
- Strand: Filter by positive or negative strand
- Donors/Acceptors: Filter by splice site donors or acceptors
- Intronic cryptic site distance from nearest natural site: Generally, variants most likely to be potentially deleterious are found nearby a natural site. Use this filter to define how far away an intronic cryptic site can be from a natural site.

- Cryptic site strength relative to nearest natural site: Generally, only those cryptic sites with R_i greater than a nearby natural site have the potential to be deleterious. Selecting "Cryptic site R_i greater than nearest natural site R_i" will preserve these variants.
- Cryptic sites within introns and exons: This option will filter for cryptic sites within exons
 or introns only.

Discussion of the Standard Preset Filter

This preset emulates the filtering methods used in the following paper: <u>Shirley BC, Mucaki EJ,</u> <u>Whitehead T, Costea PI, Akan P, Rogan PK. Interpretation, stratification and evidence for</u> <u>sequence variants affecting mRNA splicing in complete human genome sequences. Genomics</u> <u>Proteomics Bioinformatics. 2013 Apr;11(2):77-85.</u> Further explanations for each filter can be found there.

These filters are designed to keep those variants most likely to be potentially deleterious. When considering natural sites, we are only interested in those decreasing in R_i since (in general) a natural site increasing in R_i will only widen the gap in R_i between itself and nearby potential cryptic sites. Similarly, we are only interested in cryptic sites with an R_i greater than a natural site within 300bp. We allow variants with an rsID, but only those with an average heterozygosity less than 5%. This eliminates common rsIDs which are therefore unlikely to be deleterious.

Exporting Results

You may wish to export your filtered tables to examine using external software. To do so, select *Export* from the top toolbar in the workbench or from the File menu. In the window that appears enter a desired file name, save location, and file type. Click *Save* and file export will begin.

Shannon Human Splicing Pipeline

References

These are references for information theory based splice site analysis. The original paper on this topic can be found

1. Fong K, Rama Devi AR, Lai-Cheong JE, Chirla D, Panda SK, Liu L, et al. Infantile systemic hyalinosis associated with a putative splice-site mutation in the ANTXR2 gene. Clin Exp Dermatol. 2012 Feb 2.

2. Kwon MJ, Baek W, Ki CS, Kim HY, Koh SH, Kim JW, et al. Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in korean patients with familial and sporadic ALS. Neurobiol Aging. 2012 May;33(5):1017.e17,1017.e23.

3. Naiya T, Misra AK, Biswas A, Das SK, Ray K, Ray J. Occurrence of GCH1 gene mutations in a group of indian dystonia patients. J Neural Transm. 2012 Feb 29.

4. Slavotinek AM, Chao R, Vacik T, Yahyavi M, Abouzeid H, Bardakjian T, et al. VAX1 mutation associated with microphthalmia, corpus callosum agenesis, and orofacial clefting: The first description of a VAX1 phenotype in humans. Hum Mutat. 2012 Feb;33(2):364-8.

5. Aggarwal S, Jinda W, Limwongse C, Atchaneeyasakul LO, Phadke SR. Run-on mutation in the PAX6 gene and chorioretinal degeneration in autosomal dominant aniridia. Mol Vis. 2011;17:1305-9.

6. Bertola F, Filocamo M, Casati G, Mort M, Rosano C, Tylki-Szymanska A, et al. IDUA mutational profiling of a cohort of 102 european patients with mucopolysaccharidosis type I: Identification and characterization of 35 novel alpha-L-iduronidase (IDUA) alleles. Hum Mutat. 2011 Jun;32(6):E2189-210.

7. Calandra S, Tarugi P, Bertolini S. Altered mRNA splicing in lipoprotein disorders. Curr Opin Lipidol. 2011 Apr;22(2):93-9.

8. Castaman G, Giacomelli SH, Mancuso ME, D'Andrea G, Santacroce R, Sanna S, et al. Deep intronic variations may cause mild hemophilia A. J Thromb Haemost. 2011 Aug;9(8):1541-8.

9. Covaciu C, Grosso F, Pisaneschi E, Zambruno G, Gregersen PA, Sommerlund M, et al. A founder synonymous COL7A1 mutation in three danish families with dominant dystrophic epidermolysis bullosa pruriginosa identifies exonic regulatory sequences required for exon 87 splicing. Br J Dermatol. 2011 Sep;165(3):678-82.

10. Ellis JR, Jr, Heinrich B, Mautner VF, Kluwe L. Effects of splicing mutations on NF2transcripts: Transcript analysis and information theoretic predictions. Genes Chromosomes Cancer. 2011 Aug;50(8):571-84.

11. Fasano T, Pisciotta L, Bocchi L, Guardamagna O, Assandro P, Rabacchi C, et al. Lysosomal lipase deficiency: Molecular characterization of eleven patients with wolman or cholesteryl ester storage disease. Mol Genet Metab. 2011 Dec 17.

12. Lacroix M, Lacaze-Buzy L, Furio L, Tron E, Valari M, Van der Wier G, et al. Clinical expression and new SPINK5 splicing defects in netherton syndrome: Unmasking a frequent founder synonymous mutation and unconventional intronic mutations. J Invest Dermatol. 2011 Nov 17.

13. Li L, Xiao X, Li S, Jia X, Wang P, Guo X, et al. Detection of variants in 15 genes in 87 unrelated chinese patients with leber congenital amaurosis. PLoS One. 2011;6(5):e19458.

14. Lietman SA. Preimplantation genetic diagnosis for hereditary endocrine disease. Endocr Pract. 2011 Jul-Aug;17 Suppl 3:28-32.

15. Lim BC, Hwang H, Chae JH, Choi JE, Hwang YS, Kang SH, et al. SCN1A mutational analysis in korean patients with dravet syndrome. Seizure. 2011 Dec;20(10):789-94.

16. Liu J, Zhou X, Shan Z, Yang J, Yang Q, Cui Y, et al. The association of LRP5 gene polymorphisms with ankylosing spondylitis in a chinese han population. J Rheumatol. 2011 Dec;38(12):2616-8.

17. Lopezjimenez N, Flannick J, Yahyavi M, Li J, Bardakjian T, Tonkin L, et al. Targeted nextgeneration sequencing in anophthalmia and microphthalmia patients confirms *SOX2*, *OTX2* and *FOXE3 mutations*. BMC Med Genet. 2011 Dec 28;12(1):172.

18. Mucaki EJ, Ainsworth P, Rogan PK. Comprehensive prediction of mRNA splicing effects of BRCA1 and BRCA2 variants. Hum Mutat. 2011 Jul;32(7):735-42.

19. Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat. 2011 DEC;32(12):1385-9.

20. Ozaltin F, Ibsirlioglu T, Taskiran EZ, Baydar DE, Kaymaz F, Buyukcelik M, et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet. 2011 Jul 15;89(1):139-47.

21. Parslow GR. Websites of note. Biochem Mol Biol Educ. 2011 May-Jun;39(3):230-2.

22. Roux-Buisson N, Rendu J, Denjoy I, Guicheney P, Goldenberg A, David N, et al. Functional analysis reveals splicing mutations of the CASQ2 gene in patients with CPVT: Implication for genetic counselling and clinical management. Hum Mutat. 2011 May 26.

23. Slavotinek AM, Baranzini SE, Schanze D, Labelle-Dumais C, Short KM, Chao R, et al. Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J Med Genet. 2011 Jun;48(6):375-82.

24. Tram E, Ibrahim-Zada I, Briollais L, Knight JA, Andrulis IL, Ozcelik H. Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the ontario site of the breast cancer family registry (CFR). Breast Cancer Res. 2011 Aug 11;13(4):R77.

25. Xiong Y, Wang M, Fang K, Xing Q, Feng G, Shen L, et al. A systematic genetic polymorphism analysis of the CYP2C9 gene in four different geographical han populations in mainland china. Genomics. 2011 May;97(5):277-81.

26. Zampieri S, Buratti E, Dominissini S, Montalvo AL, Pittis MG, Bembi B, et al. Splicing mutations in glycogen-storage disease type II: Evaluation of the full spectrum of mutations and their relation to patients' phenotypes. Eur J Hum Genet. 2011 Apr;19(4):422-31.

27. Bacci C, Sestini R, Provenzano A, Paganini I, Mancini I, Porfirio B, et al. Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation. Neurogenetics. 2010 Feb;11(1):73-80.

28. Bocchi L, Pisciotta L, Fasano T, Candini C, Puntoni MR, Sampietro T, et al. Multiple abnormally spliced ABCA1 mRNAs caused by a novel splice site mutation of ABCA1 gene in a patient with tangier disease. Clin Chim Acta. 2010 Apr 2;411(7-8):524-30.

29. Cabral RM, Liu L, Hogan C, Dopping-Hepenstal PJ, Winik BC, Asial RA, et al. Homozygous mutations in the 5' region of the JUP gene result in cutaneous disease but normal heart development in children. J Invest Dermatol. 2010 Jun;130(6):1543-50.

30. Castiglia D, Zambruno G. Mutation mechanisms. Dermatol Clin. 2010 Jan;28(1):17-22.

31. Chen LJ, Tam PO, Tham CC, Liang XY, Chiang SW, Canlas O, et al. Evaluation of SPARC as a candidate gene of juvenile-onset primary open-angle glaucoma by mutation and copy number analyses. Mol Vis. 2010 Oct 8;16:2016-25.

32. Clark GR, Crowe P, Muszynska D, O'Prey D, O'Neill J, Alexander S, et al. Development of a diagnostic genetic test for simplex and autosomal recessive retinitis pigmentosa. Ophthalmology. 2010 Nov;117(11):2169,77.e3.

33. Dash DP, George S, O'Prey D, Burns D, Nabili S, Donnelly U, et al. Mutational screening of VSX1 in keratoconus patients from the european population. Eye (Lond). 2010 Jun;24(6):1085-92.

34. Dutrannoy V, Demuth I, Baumann U, Schindler D, Konrat K, Neitzel H, et al. Clinical variability and novel mutations in the NHEJ1 gene in patients with a nijmegen breakage syndrome-like phenotype. Hum Mutat. 2010 Sep;31(9):1059-68.

35. Gao S, Zhang N, Zhang L, Duan GY, Zhang T. The human variome project and its progress. Yi Chuan. 2010 Nov;32(11):1105-13.

36. Gaweda-Walerych K, Safranow K, Maruszak A, Bialecka M, Klodowska-Duda G, Czyzewski K, et al. Mitochondrial transcription factor A variants and the risk of parkinson's disease. Neurosci Lett. 2010 Jan 18;469(1):24-9.

37. Johnson DS. Study of a possible genetic cause of CHARGE association. 2010.

38. Lim BC, Ki CS, Kim JW, Cho A, Kim MJ, Hwang H, et al. Fukutin mutations in congenital muscular dystrophies with defective glycosylation of dystroglycan in korea. Neuromuscul Disord. 2010 Aug;20(8):524-30.

39. Mackay DS, Henderson RH, Sergouniotis PI, Li Z, Moradi P, Holder GE, et al. Novel mutations in MERTK associated with childhood onset rod-cone dystrophy. Mol Vis. 2010 Mar 9;16:369-77.

40. Papi L, Putignano AL, Congregati C, Piaceri I, Zanna I, Sera F, et al. A PALB2 germline mutation associated with hereditary breast cancer in italy. Fam Cancer. 2010 Jun;9(2):181-5.

41. Piva F, Giulietti M, Nardi B, Bellantuono C, Principato G. An improved in silico selection of phenotype affecting polymorphisms in SLC6A4, HTR1A and HTR2A genes. Human Psychopharmacology-Clinical and Experimental. 2010 MAR;25(2):153-61.

42. Rossi PI, Vaccari CM, Terracciano A, Doria-Lamba L, Facchinetti S, Priolo M, et al. The metabotropic glutamate receptor 1, GRM1: Evaluation as a candidate gene for inherited forms of cerebellar ataxia. J Neurol. 2010 Apr;257(4):598-602.

43. Soran H, Charlton-Menys V, Hegele R, Wang J, Benbow EW, Roberts I, et al. Proteinuria and severe mixed dyslipidemia associated with a novel APOAV gene mutation. J Clin Lipidol. 2010 Jul-Aug;4(4):310-3.

44. Tunca B, Pedroni M, Cecener G, Egeli U, Borsi E, Zorluoglu A, et al. Analysis of mismatch repair gene mutations in turkish HNPCC patients. Fam Cancer. 2010 Sep;9(3):365-76.

45. Tuohy T, Burt RW. Attenuated familial adenomatous polyposis: Diagnosis, management and future prognosis. In: Rodriguez-Bigas R, Cutait R, Lunch P, Tomlinson I, Vasen H, editors. Hereditary Colorectal Cancer. Springer; 2010.

46. Yang M, Solidar A, Wyckoff GJ. Novel method for discerning the action of selection during evolution. J Biomed Sci Eng. 2010;3:109-113.

47. Aoyama Y, Ozer I, Demirkol M, Ebara T, Murase T, Podskarbi T, et al. Molecular features of 23 patients with glycogen storage disease type III in turkey: A novel mutation p.R1147G associated with isolated glucosidase deficiency, along with 9 AGL mutations. J Hum Genet. 2009 NOV;54(11):681-6.

48. Baralle D, Lucassen A, Buratti E. Missed threads. the impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. 2009 Aug;10(8):810-6.

49. Botta E, Nardo T, Orioli D, Guglielmino R, Ricotti R, Bondanza S, et al. Genotype-phenotype relationships in trichothiodystrophy patients with novel splicing mutations in the XPD gene. Hum Mutat. 2009 Mar;30(3):438-45.

50. Caux-Moncoutier V, Pages-Berhouet S, Michaux D, Asselain B, Castera L, De Pauw A, et al. Impact of BRCA1 and BRCA2 variants on splicing: Clues from an allelic imbalance study. Eur J Hum Genet. 2009 Nov;17(11):1471-80.

51. Cefalu AB, Noto D, Magnolo L, Pinotti E, Gomaraschi M, Martini S, et al. Novel mutations of CETP gene in italian subjects with hyperalphalipoproteinemia. Atherosclerosis. 2009 May;204(1):202-7.

52. Concolino P, Vendittelli F, Mello E, Minucci A, Carrozza C, Rossodivita A, et al. Functional analysis of two rare CYP21A2 mutations detected in italian patients with a mildest form of congenital adrenal hyperplasia. Clin Endocrinol (Oxf). 2009 Oct;71(4):470-6.

53. Cruchaga C, Fernandez-Seara MA, Seijo-Martinez M, Samaranch L, Lorenzo E, Hinrichs A, et al. Cortical atrophy and language network reorganization associated with a novel progranulin mutation. Cereb Cortex. 2009 Aug;19(8):1751-60.

54. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human splicing finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009 May;37(9):e67.

55. Di Leo E, Magnolo L, Pinotti E, Martini S, Cortella I, Vitturi N, et al. Functional analysis of two novel splice site mutations of APOB gene in familial hypobetalipoproteinemia. Mol Genet Metab. 2009 Feb;96(2):66-72.

56. Dua-Awereh MB, Shimomura Y, Kraemer L, Wajid M, Christiano AM. Mutations in the desmoglein 1 gene in five pakistani families with striate palmoplantar keratoderma. J Dermatol Sci. 2009 Mar;53(3):192-7.

57. Eckl KM, de Juanes S, Kurtenbach J, Natebus M, Lugassy J, Oji V, et al. Molecular analysis of 250 patients with autosomal recessive congenital ichthyosis: Evidence for mutation hotspots in ALOXE3 and allelic heterogeneity in ALOX12B. J Invest Dermatol. 2009 Jun;129(6):1421-8.

58. ElSharawy A, Hundrieser B, Brosch M, Wittig M, Huse K, Platzer M, et al. Systematic evaluation of the effect of common SNPs on pre-mRNA splicing. Hum Mutat. 2009 Apr;30(4):625-32.

59. Fattal-Valevski A, DiMaio MS, Hisama FM, Hobson GM, Davis-Williams A, Garbern JY, et al. Variable expression of a novel PLP1 mutation in members of a family with pelizaeusmerzbacher disease. J Child Neurol. 2009 May;24(5):618-24.

60. Faz DB. Bases geneticas de la conducta / Genetic bases of Behavior. Barcelona, Catalonia, Spain: Edidions de la Universitat Oberta de Catalunya; 2009.

61. Johnson AD. Single-nucleotide polymorphism bioinformatics: A comprehensive review of resources. Circ Cardiovasc Genet. 2009 Oct;2(5):530-6.

62. Kaput J, Cotton RG, Hardman L, Watson M, Al Aqeel AI, Al-Aama JY, et al. Planning the human variome project: The spain report. Hum Mutat. 2009 Apr;30(4):496-510.

63. Kolsch H, Lutjohann D, Jessen F, Popp J, Hentschel F, Kelemen P, et al. RXRA gene variations influence alzheimer's disease risk and cholesterol metabolism. J Cell Mol Med. 2009 Mar;13(3):589-98.

64. Kolsch H, Lutjohann D, Jessen F, Popp J, Hentschel F, Kelemen P, et al. CYP46A1 variants influence alzheimer's disease risk and brain cholesterol metabolism. Eur Psychiatry. 2009 Apr;24(3):183-90.

65. Lee PY. Prioritizing SNPs for disease-gene association studies: Algorithms and systems. 2009.

66. Lee PP, Chen TX, Jiang LP, Chen J, Chan KW, Lee TL, et al. Clinical and molecular characteristics of 35 chinese children with wiskott-aldrich syndrome. J Clin Immunol. 2009 Jul;29(4):490-500.

67. Lee ST, Lee J, Lee M, Kim JW, Ki CS. Clinical and genetic analysis of korean patients with congenital insensitivity to pain with anhidrosis. Muscle Nerve. 2009 Nov;40(5):855-9.

68. Luquin N, Yu B, Saunderson RB, Trent RJ, Pamphlett R. Genetic variants in the promoter of TARDBP in sporadic amyotrophic lateral sclerosis. Neuromuscular Disorders. 2009 OCT;19(10):696-700.

69. Marco EJ, Abidi FE, Bristow J, Dean WB, Cotter P, Jeremy RJ, et al. ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. BMJ Case Rep. 2009;2009:bcr06.2009.1999. Epub 2009 Jul 2.

70. Martoni E, Urciuolo A, Sabatelli P, Fabris M, Bovolenta M, Neri M, et al. Identification and characterization of novel collagen VI non-canonical splicing mutations causing ullrich congenital muscular dystrophy. Hum Mutat. 2009 May;30(5):E662-72.

71. Maruszak A, Safranow K, Gustaw K, Kijanowska-Haladyna B, Jakubowska K, Olszewska M, et al. PIN1 gene variants in alzheimer's disease. BMC Med Genet. 2009 Nov 12;10:115.

72. Megremis S, Mitsioni A, Mitsioni AG, Fylaktou I, Kitsiou-Tzelli S, Stefanidis CJ, et al. Nucleotide variations in the NPHS2 gene in greek children with steroid-resistant nephrotic syndrome. Genet Test Mol Biomarkers. 2009 Apr;13(2):249-56.

73. Mintchev N, Zamba-Papanicolaou E, Kleopa KA, Christodoulou K. A novel ALS2 splice-site mutation in a cypriot juvenile-onset primary lateral sclerosis family. Neurology. 2009 Jan 6;72(1):28-32.

74. Moriwaki K, Noda K, Furukawa Y, Ohshima K, Uchiyama A, Nakagawa T, et al. Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology. 2009 Jul;137(1):188,98, 198.e1-2.

75. Najah M, Di Leo E, Awatef J, Magnolo L, Imene J, Pinotti E, et al. Identification of patients with abetalipoproteinemia and homozygous familial hypobetalipoproteinemia in tunisia. Clin Chim Acta. 2009 Mar;401(1-2):51-6.

76. Naruse H, Ikawa N, Yamaguchi K, Nakamura Y, Arai M, Ishioka C, et al. Determination of splice-site mutations in lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay. Fam Cancer. 2009;8(4):509-17.

77. Okubo M, Ishihara M, Iwasaki T, Ebara T, Aoyama Y, Murase T, et al. A novel APOA5 splicing mutation IVS2+1g > a in a japanese chylomicronemia patient. Atherosclerosis. 2009 NOV;207(1):24-5.

78. Pelucchi S, Mariani R, Trombini P, Coletti S, Pozzi M, Paolini V, et al. Expression of hepcidin and other iron-related genes in type 3 hemochromatosis due to a novel mutation in transferrin receptor-2. Haematologica. 2009 Feb;94(2):276-9.

79. Rhyne J, Mantaring MM, Gardner DF, Miller M. Multiple splice defects in ABCA1 cause low HDL-C in a family with hypoalphalipoproteinemia and premature coronary disease. BMC Med Genet. 2009 Jan 8;10:1.

80. Rogan PK. Ab initio exon definition using an information theory-based approach. ; 2009.

81. Stockley TL, Mendoza-London R, Propst EJ, Sodhi S, Dupuis L, Papsin BC. A recurrent EYA1 mutation causing alternative RNA splicing in branchio-oto-renal syndrome: Implications for molecular diagnostics and disease mechanism. American Journal of Medical Genetics Part a. 2009 MAR;149A(3):322-7.

82. Tosetto E, Ceol M, Mezzabotta F, Ammenti A, Peruzzi L, Caruso MR, et al. Novel mutations of the CLCN5 gene including a complex allele and A 5' UTR mutation in dent disease 1. Clin Genet. 2009 Oct;76(4):413-6.

83. Vreeswijk MP, Kraan JN, van der Klift HM, Vink GR, Cornelisse CJ, Wijnen JT, et al. Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat. 2009 Jan;30(1):107-14.

84. Xu X, Li S, Xiao X, Wang P, Guo X, Zhang Q. Sequence variations of GRM6 in patients with high myopia. Mol Vis. 2009 Oct 19;15:2094-100.

85. Yu B. Role of in silico tools in gene discovery. Mol Biotechnol. 2009 Mar;41(3):296-306.

86. Alcantara-Ortigoza MA, Belmont-Martinez L, Vela-Amieva M, Gonzalez-Del Angel A. Analysis of the CTNS gene in nephropathic cystinosis mexican patients: Report of four novel mutations and identification of a false positive 57-kb deletion genotype with LDM-2/exon 4 multiplex PCR assay. Genet Test. 2008 Sep;12(3):409-14.

87. Anczukow O, Buisson M, Salles MJ, Triboulet S, Longy M, Lidereau R, et al. Unclassified variants identified in BRCA1 exon 11: Consequences on splicing. Genes Chromosomes Cancer. 2008 May;47(5):418-26.

88. Beetz C, Schule R, Deconinck T, Tran-Viet KN, Zhu H, Kremer BP, et al. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain. 2008 Apr;131(Pt 4):1078-86.

89. Bloethner S, Mould A, Stark M, Hayward NK. Identification of ARHGEF17, DENND2D, FGFR3, and RB1 mutations in melanoma by inhibition of nonsense-mediated mRNA decay. Genes Chromosomes Cancer. 2008 Dec;47(12):1076-85.

90. Bogaerts V, Nuytemans K, Reumers J, Pals P, Engelborghs S, Pickut B, et al. Genetic variability in the mitochondrial serine protease HTRA2 contributes to risk for parkinson disease. Hum Mutat. 2008 Jun;29(6):832-40.

91. Bonnet-Dupeyron MN, Combes P, Santander P, Cailloux F, Boespflug-Tanguy O, Vaurs-Barriere C. PLP1 splicing abnormalities identified in pelizaeus-merzbacher disease and SPG2 fibroblasts are associated with different types of mutations. Hum Mutat. 2008 Aug;29(8):1028-36.

92. Borroni B, Archetti S, Alberici A, Agosti C, Gennarelli M, Bigni B, et al. Progranulin genetic variations in frontotemporal lobar degeneration: Evidence for low mutation frequency in an italian clinical series. Neurogenetics. 2008 Jul;9(3):197-205.

93. Brockmoller J, Tzvetkov MV. Pharmacogenetics: Data, concepts and tools to improve drug discovery and drug treatment. Eur J Clin Pharmacol. 2008 Feb;64(2):133-57.

94. Broer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, et al. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest. 2008 Dec;118(12):3881-92.

95. Caridi G, Dagnino M, Dalgic B, Egritas O, Sancak B, Campagnoli M, et al. Analbuminemia zonguldak: Case report and mutational analysis. Clin Biochem. 2008 Mar;41(4-5):288-91.

96. Chen L, Qin S, Xie J, Tang J, Yang L, Shen W, et al. Genetic polymorphism analysis of CYP2C19 in chinese han populations from different geographic areas of mainland china. Pharmacogenomics. 2008 Jun;9(6):691-702.

97. Fang S, Guo X, Jia X, Xiao X, Li S, Zhang Q. Novel GPR143 mutations and clinical characteristics in six chinese families with X-linked ocular albinism. Mol Vis. 2008;14:1974-82.

98. Gerykov-Bujalkova M, Krivulcik T, Bartosova Z. Novel approaches in evaluation of pathogenicity of single-base exonic germline changes involving the mismatch repair genes MLH1 and MSH2 in diagnostics of lynch syndrome minireview. Neoplasma. 2008;55(6):463-71.

99. Hamada T, Fukuda S, Sakaguchi S, Yasumoto S, Kim SC, Hashimoto T. Molecular and clinical characterization in japanese and korean patients with hailey-hailey disease: Six new mutations in the ATP2C1 gene. J Dermatol Sci. 2008 Jul;51(1):31-6.

100. Hampson G, Konrad MA, Scoble J. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): Compound heterozygous mutation in the claudin 16 (CLDN16) gene. BMC Nephrol. 2008 Sep 24;9:12.

101. Hartmann L, Theiss S, Niederacher D, Schaal H. Diagnostics of pathogenic splicing mutations: Does bioinformatics cover all bases? Front Biosci. 2008 May 1;13:3252-72.

102. Henneman P, Schaap FG, Rensen PC, van Dijk KW, Smelt AH. Estrogen induced hypertriglyceridemia in an apolipoprotein AV deficient patient. J Intern Med. 2008 Jan;263(1):107-8.

103. Hines RN, Koukouritaki SB, Poch MT, Stephens MC. Regulatory polymorphisms and their contribution to interindividual differences in the expression of enzymes influencing drug and toxicant disposition. Drug Metab Rev. 2008;40(2):263-301.

104. Houdayer C, Dehainault C, Mattler C, Michaux D, Caux-Moncoutier V, Pages-Berhouet S, et al. Evaluation of in silico splice tools for decision-making in molecular diagnosis. Hum Mutat. 2008 Jul;29(7):975-82.

105. Inui H, Oh KS, Nadem C, Ueda T, Khan SG, Metin A, et al. Xeroderma pigmentosumvariant patients from america, europe, and asia. J Invest Dermatol. 2008 Aug;128(8):2055-68.

106. Kolsch H, Jessen F, Wiltfang J, Lewczuk P, Dichgans M, Kornhuber J, et al. Influence of SORL1 gene variants: Association with CSF amyloid-beta products in probable alzheimer's disease. Neurosci Lett. 2008 Jul 25;440(1):68-71.

107. Lietman SA, Goldfarb J, Desai N, Levine MA. Preimplantation genetic diagnosis for severe albright hereditary osteodystrophy. J Clin Endocrinol Metab. 2008 Mar;93(3):901-4.

108. Liu Z, Venkatesh SS, Maley CC. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples. BMC Genomics. 2008 Oct 30;9:509.

109. Lopez-Jimenez E, de Campos JM, Kusak EM, Landa I, Leskela S, Montero-Conde C, et al. SDHC mutation in an elderly patient without familial antecedents. Clin Endocrinol (Oxf). 2008 Dec;69(6):906-10.

110. Luquin N, Yu B, Trent RJ, Morahan JM, Pamphlett R. An analysis of the entire SOD1 gene in sporadic ALS. Neuromuscul Disord. 2008 Jul;18(7):545-52.

111. Nalla VK, Rogan PK. Automated splicing mutation analysis by information theory (vol 25, pg 334, 2005). Hum Mutat. 2008 SEP;29(9):1168-.

112. Palomino-Doza J, Rahman TJ, Avery PJ, Mayosi BM, Farrall M, Watkins H, et al. Ambulatory blood pressure is associated with polymorphic variation in P2X receptor genes. Hypertension. 2008 Nov;52(5):980-5.

113. Qin S, Shen L, Zhang A, Xie J, Shen W, Chen L, et al. Systematic polymorphism analysis of the CYP2D6 gene in four different geographical han populations in mainland china. Genomics. 2008 Sep;92(3):152-8.

114. Riveira-Munoz E, Devuyst O, Belge H, Jeck N, Strompf L, Vargas-Poussou R, et al. Evaluating PVALB as a candidate gene for SLC12A3-negative cases of gitelman's syndrome. Nephrol Dial Transplant. 2008 Oct;23(10):3120-5.

115. Schwaderer P, Knuppel T, Konrad M, Mehls O, Scharer K, Schaefer F, et al. Clinical course and NPHS2 analysis in patients with late steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2008 Feb;23(2):251-6.

116. Spurdle AB, Couch FJ, Hogervorst FB, Radice P, Sinilnikova OM, IARC Unclassified Genetic Variants Working Group. Prediction and assessment of splicing alterations: Implications for clinical testing. Hum Mutat. 2008 Nov;29(11):1304-13.

117. Sznajer Y, Coldea C, Meire F, Delpierre I, Sekhara T, Touraine RL. A de novo SOX10 mutation causing severe type 4 waardenburg syndrome without hirschsprung disease. Am J Med Genet A. 2008 Apr 15;146A(8):1038-41.

118. Tournier I, Vezain M, Martins A, Charbonnier F, Baert-Desurmont S, Olschwang S, et al. A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat. 2008 Dec;29(12):1412-24.

119. Wan L, Lee CC, Hsu CM, Hwu WL, Yang CC, Tsai CH, et al. Identification of eight novel mutations of the acid alpha-glucosidase gene causing the infantile or juvenile form of glycogen storage disease type II. J Neurol. 2008 Jun;255(6):831-8.

120. Watnick TJ, Garcia-Gonzalez MA, Germino GG, Jones JG, inventors; PKD mutations and evaluation of the same. International 2008 .

121. Wong T, Gammon L, Liu L, Mellerio JE, Dopping-Hepenstal PJ, Pacy J, et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2008 Sep;128(9):2179-89.

122. Zhang K, Nowak I, Rushlow D, Gallie BL, Lohmann DR. Patterns of missplicing caused by RB1 gene mutations in patients with retinoblastoma and association with phenotypic expression. Hum Mutat. 2008 Apr;29(4):475-84.

123. Akiyama M, Titeux M, Sakai K, McMillan JR, Tonasso L, Calvas P, et al. DNA-based prenatal diagnosis of harlequin ichthyosis and characterization of ABCA12 mutation consequences. J Invest Dermatol. 2007 Mar;127(3):568-73.

124. Akiyama M, Titeux M, Sakai K, McMillan JR, Tonasso L, Calvas P, et al. DNA-based prenatal diagnosis of harlequin ichthyosis and characterization of ABCA12 mutation consequences RID C-6657-2009. J Invest Dermatol. 2007 MAR;127(3):568-73.

125. Arita K, Wessagowit V, Inamadar AC, Palit A, Fassihi H, Lai-Cheong JE, et al. Unusual molecular findings in kindler syndrome. Br J Dermatol. 2007 Dec;157(6):1252-6.

126. Ben Selma Z, Yilmaz S, Schischmanoff PO, Blom A, Ozogul C, Laroche L, et al. A novel S115G mutation of CGI-58 in a turkish patient with dorfman-chanarin syndrome. J Invest Dermatol. 2007 Sep;127(9):2273-6.

127. Di Leo E, Magnolo L, Lancellotti S, Croce L, Visintin L, Tiribelli C, et al. Abnormal apolipoprotein B pre-mRNA splicing in patients with familial hypobetalipoproteinaemia. J Med Genet. 2007 Mar;44(3):219-24.

128. Drogemuller C, Philipp U, Haase B, Gunzel-Apel AR, Leeb T. A noncoding melanophilin gene (MLPH) SNP at the splice donor of exon 1 represents a candidate causal mutation for coat color dilution in dogs. J Hered. 2007;98(5):468-73.

129. Garcia-Gonzalez MA, Jones JG, Allen SK, Palatucci CM, Batish SD, Seltzer WK, et al. Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. Mol Genet Metab. 2007 Sep-Oct;92(1-2):160-7.

130. Keren B, Suzuki OT, Gerard-Blanluet M, Bremond-Gignac D, Elmaleh M, Titomanlio L, et al. CNS malformations in knobloch syndrome with splice mutation in COL18A1 gene. Am J Med Genet A. 2007 Jul 1;143A(13):1514-8.

131. Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, et al. A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain. 2007 May;130(Pt 5):1360-74.

132. Oh SW, Lee JS, Kim MY, Kim SC. COL7A1 mutational analysis in korean patients with dystrophic epidermolysis bullosa. Br J Dermatol. 2007 Dec;157(6):1260-4.

133. Oh SW, Lee JS, Kim MY, Kim SC. Novel keratin 5 mutations in epidermolysis bullosa simplex: Cases with unusual genotype-phenotype correlation. J Dermatol Sci. 2007 Dec;48(3):229-32.

134. Papp J, Kovacs ME, Olah E. Germline MLH1 and MSH2 mutational spectrum including frequent large genomic aberrations in hungarian hereditary non-polyposis colorectal cancer families: Implications for genetic testing. World J Gastroenterol. 2007 May 21;13(19):2727-32.

135. Pasmooij AM, Pas HH, Bolling MC, Jonkman MF. Revertant mosaicism in junctional epidermolysis bullosa due to multiple correcting second-site mutations in LAMB3. J Clin Invest. 2007 May;117(5):1240-8.

136. Pasvolsky R, Feigelson SW, Kilic SS, Simon AJ, Tal-Lapidot G, Grabovsky V, et al. A LAD-III syndrome is associated with defective expression of the rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J Exp Med. 2007 Jul 9;204(7):1571-82.

137. Riveira-Munoz E, Chang Q, Godefroid N, Hoenderop JG, Bindels RJ, Dahan K, et al. Transcriptional and functional analyses of SLC12A3 mutations: New clues for the pathogenesis of gitelman syndrome. J Am Soc Nephrol. 2007 Apr;18(4):1271-83.

138. Sanggaard KM, Rendtorff ND, Kjaer KW, Eiberg H, Johnsen T, Gimsing S, et al. Branchiooto-renal syndrome: Detection of EYA1 and SIX1 mutations in five out of six danish families by combining linkage, MLPA and sequencing analyses. Eur J Hum Genet. 2007 Nov;15(11):1121-31.

139. Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet. 2007 Nov;81(5):906-12.

140. Song HR, Park JW, Cho DY, Yang JH, Yoon HR, Jung SC. PHEX gene mutations and genotype-phenotype analysis of korean patients with hypophosphatemic rickets. J Korean Med Sci. 2007 Dec;22(6):981-6.

141. Wang E, Dimova N, Cambi F. PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes. Nucleic Acids Res. 2007;35(12):4164-78.

142. Abstracts of the the american society for neurochemistry 37th annual meeting, portland, oregon, USA, 11-15 march 2006. J Neurochem. 2006 Mar;96 Suppl 1:1-150.

143. Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: Searching for master checkpoints in exon definition. Nucleic Acids Res. 2006 Jul 19;34(12):3494-510.

144. IDDM2 locus: 5' noncoding intron I splicing and translational efficiency effects of INS - 23HphI - more than a tag for the INS promoter VNTR. [Internet].; 2006. Available from: abstracts/hgvs.org/Helsenki/Presentations/Day.ppt.

145. Douglas DA, Zhong H, Ro JY, Oddoux C, Berger AD, Pincus MR, et al. Novel mutations of epidermal growth factor receptor in localized prostate cancer. Front Biosci. 2006 Sep 1;11:2518-25.

146. Gaedigk A, Baker DW, Totah RA, Gaedigk R, Pearce RE, Vyhlidal CA, et al. Variability of CYP2J2 expression in human fetal tissues. J Pharmacol Exp Ther. 2006 Nov;319(2):523-32.

147. Gaedigk A, Leeder JS. Letter to the editor. Clin Pharmacol Ther. 2006;80:558-560.

148. Garcia-Blanco M. Alternative splicing: Therapeutic target and tool. In: Jeanteur P, editor. Alternative Splicing and Disease. Berlin, Germany: Springer; 2006. p. 47-64.

149. Godefroid N, Riveira-Munoz E, Saint-Martin C, Nassogne MC, Dahan K, Devuyst O. A novel splicing mutation in SLC12A3 associated with gitelman syndrome and idiopathic intracranial hypertension. Am J Kidney Dis. 2006 Nov;48(5):e73-9.

150. Gruber FX, Hjorth-Hansen H, Mikkola I, Stenke L, Johansen T. A novel bcr-abl splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib. Leukemia. 2006 Nov;20(11):2057-60.

151. Hiller M, Huse K, Szafranski K, Rosenstiel P, Schreiber S, Backofen R, et al. Phylogenetically widespread alternative splicing at unusual GYNGYN donors. Genome Biol. 2006;7(7):R65.

152. Hobson GM, Huang Z, Sperle K, Sistermans E, Rogan PK, Garbern JY, et al. Splice-site contribution in alternative splicing of PLP1 and DM20: Molecular studies in oligodendrocytes. Hum Mutat. 2006 Jan;27(1):69-77.

153. Hube F, Guo J, Chooniedass-Kothari S, Cooper C, Hamedani MK, Dibrov AA, et al. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol. 2006 Jul;25(7):418-28.

154. Kralovicova J, Lei H, Vorechovsky I. Phenotypic consequences of branch point substitutions. Hum Mutat. 2006 Aug;27(8):803-13.

155. Královicová J, Gaunt TR, Rodriguez S, Wood PJ. Variants in the human insulin gene that affect pre-mRNA splicing: Is -23HphI a functional single nucleotide polymorphism at IDDM2? Diabetes. 2006 Jan 2006;55(1):260-4.

156. Marco EJ, Bristow J, Cotter P, Stevenson PD, Pennacchio L, Schwartz CE, et al. In: *ARHGEF9*: Identification of a novel X-linked mental retardation and behavior disorder gene. ; 2006. p. Poster #S-144.

157. Mukhopadhyay A, Nikopoulos K, Maugeri A, de Brouwer AP, van Nouhuys CE, Boon CJ, et al. Erosive vitreoretinopathy and wagner disease are caused by intronic mutations in CSPG2/Versican that result in an imbalance of splice variants. Invest Ophthalmol Vis Sci. 2006 Aug;47(8):3565-72.

158. Oh KS, Khan SG, Jaspers NG, Raams A, Ueda T, Lehmann A, et al. Phenotypic heterogeneity in the XPB DNA helicase gene (ERCC3): Xeroderma pigmentosum without and with cockayne syndrome. Hum Mutat. 2006 Nov;27(11):1092-103.

159. Pasmooij AM. Revertant mosaicism in epidermolysis bullosa due to different second site mutations in LAMB3. 2006:Chapter 3.

160. Priore Oliva C, Tarugi P, Calandra S, Pisciotta L, Bellocchio A, Bertolini S, et al. A novel sequence variant in APOA5 gene found in patients with severe hypertriglyceridemia. Atherosclerosis. 2006 Sep;188(1):215-7.

161. Russcher H. Glucocorticoid receptor variants modulate the sensitivity to cortisol. 2006.

162. Russcher H, Smit P, van Rossum EF, van den Akker EL, Brinkmann AO, de Heide LJ, et al. Strategies for the characterization of disorders in cortisol sensitivity. J Clin Endocrinol Metab. 2006 Feb;91(2):694-701.

163. Sabet A, Li J, Ghandour K, Pu Q, Wu X, Kamholz J, et al. Skin biopsies demonstrate MPZ splicing abnormalities in charcot-marie-tooth neuropathy 1B. Neurology. 2006 Oct 10;67(7):1141-6.

164. Schneider TD. Twenty years of delila and molecular information theory: The altenbergaustin workshop in theoretical biology biological information, beyond metaphor: Causality, explanation, and unification altenberg, austria, 11-14 july 2002. Biol Theory. 2006;1(3):250-60.

165. Schonfelder EM, Knuppel T, Tasic V, Miljkovic P, Konrad M, Wuhl E, et al. Mutations in uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am J Kidney Dis. 2006 Jun;47(6):1004-12.

166. Smit P. Factors determining glucocorticoid sensitivity in man. 2006.

167. Tartaglia-Polcini A, Bonnart C, Micheloni A, Cianfarani F, Andre A, Zambruno G, et al. SPINK5, the defective gene in netherton syndrome, encodes multiple LEKTI isoforms derived from alternative pre-mRNA processing. J Invest Dermatol. 2006 Feb;126(2):315-24.

168. Titeux M, Mejia JE, Mejlumian L, Bourthoumieu S, Mirval S, Tonasso L, et al. Recessive dystrophic epidermolysis bullosa caused by COL7A1 hemizygosity and a missense mutation with complex effects on splicing. Hum Mutat. 2006 Mar;27(3):291-2.

169. Glial cell-line derived neurotrophic factor: Un gene candidate per la patogenesi del rene con midollare a spugna [Internet].; 2006. Available from: <u>http://www.sigu.net/</u> e107_files/downloads/Comunicazioni/Genetica%20delle%20Malattie%20Complesse.pdf.

170. Tosetto E, Ghiggeri GM, Emma F, Barbano G, Carrea A, Vezzoli G, et al. Phenotypic and genetic heterogeneity in dent's disease--the results of an italian collaborative study. Nephrol Dial Transplant. 2006 Sep;21(9):2452-63.

171. von Kodolitsch Y, Berger J, Rogan PK. Predicting severity of haemophilia A and B splicing mutations by information analysis. Haemophilia. 2006 May;12(3):258-62.

172. Vorechovsky I. Aberrant 3' splice sites in human disease genes: Mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2006;34(16):4630-41.

173. Wang J, Sonnerborg A, Rane A, Josephson F, Lundgren S, Stahle L, et al. Identification of a novel specific CYP2B6 allele in africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics. 2006 Mar;16(3):191-8.

174. Wang P, Guo X, Jia X, Li S, Xiao X, Zhang Q. Novel mutations of the PAX6 gene identified in chinese patients with aniridia. Mol Vis. 2006 Jun 7;12:644-8.

175. Zaffanello M, Taranta A, Palma A, Bettinelli A, Marseglia GL, Emma F. Type IV bartter syndrome: Report of two new cases. Pediatr Nephrol. 2006 Jun;21(6):766-70.

176. Bi C, Rogan P. Determining thresholds for binding site sequence models using information theory. Blair, S Chakraborty, U Chen, SH Cheng, HD Chiu, DKY Das, S Denker, G Duro, R Romay, MG Hung, D Kerre, EE VaLeong, H Lu, CT Lu, J Maguire, L Ngo, CW Sarfraz, M Tseng, C Tsumoto, S Ventura, D Wang, PP Yao, X Zhang, CN Zhang,K., editor. ; 2005.

177. Cox DG, Crusius JB, Peeters PH, Bueno-de-Mesquita HB, Pena AS, Canzian F. Haplotype of prostaglandin synthase 2/cyclooxygenase 2 is involved in the susceptibility to inflammatory bowel disease. World J Gastroenterol. 2005 Oct 14;11(38):6003-8.

178. Dinakarpandian D, Raheja V, Mehta S, Schuetz E, Rogan P. Tandem machine learning for the identification of genes regulated by transcription factors. BMC Bioinformatics. 2005 AUG 22;6:204.

179. Fasano T, Bocchi L, Pisciotta L, Bertolini S, Calandra S. Denaturing high-performance liquid chromatography in the detection of ABCA1 gene mutations in familial HDL deficiency. J Lipid Res. 2005 Apr;46(4):817-22.

180. Fornage M, Lee CR, Doris PA, Bray MS, Heiss G, Zeldin DC, et al. The soluble epoxide hydrolase gene harbors sequence variation associated with susceptibility to and protection from incident ischemic stroke. Hum Mol Genet. 2005 Oct 1;14(19):2829-37.

181. Gaedigk A, Bhathena A, Ndjountche L, Pearce RE, Abdel-Rahman SM, Alander SW, et al. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in african americans. Pharmacogenomics J. 2005;5(3):173-82.

182. Gaedigk A, Gaedigk R, Leeder JS. CYP2D7 splice variants in human liver and brain: Does CYP2D7 encode functional protein? Biochem Biophys Res Commun. 2005 Nov 4;336(4):1241-50.

183. Gaedigk A, Ndjountche L, Leeder JS, Bradford LD. Limited association of the 2988g > a single nucleotide polymorphism with CYP2D641 in black subjects. Clin Pharmacol Ther. 2005 Mar;77(3):228,30; author reply 230-1.

184. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7227-32.

185. Kern JS. The molecular basis of dystrophic epidermolysis bullosa: Mutation detection and study of clinical, biochemical, and molecular findings in 29 patients. 2005.

186. Koukouritaki SB, Poch MT, Cabacungan ET, McCarver DG, Hines RN. Discovery of novel flavin-containing monooxygenase 3 (FMO3) single nucleotide polymorphisms and functional analysis of upstream haplotype variants. Mol Pharmacol. 2005 Aug;68(2):383-92.

187. Lancellotti S, Di Leo E, Calandra S, Tarugi P. DIFETTO DI SPLICING DEL PRE-mRNA DELL'APOLIPOPROTEINA B NEL FEGATO DI PAZIENTI CON IPOBETALIPOPROTEINEMIA FAMILIARE. Patologia genetica. 2005.

188. Leman AR, Pearce DA, Rothberg PG. Gene symbol: CLN3. disease: Juvenile neuronal ceroid lipofuscinosis (batten disease). Hum Genet. 2005 Feb;116(3):236.

189. Maddalena A, Bale S, Das S, Grody W, Richards S, ACMG Laboratory Quality Assurance Committee. Technical standards and guidelines: Molecular genetic testing for ultra-rare disorders. Genet Med. 2005 Oct;7(8):571-83.

190. Nalla VK. Automated splice site analysis. 2005.

191. Nalla VK, Rogan PK. Automated splicing mutation analysis by information theory. Hum Mutat. 2005 Apr;25(4):334-42.

192. Oetting WS, Tabone T. The 2004 human genome variation society scientific meeting. Hum Mutat. 2005 Aug;26(2):160-3.

193. Skipper L, Shen H, Chua E, Bonnard C, Kolatkar P, Tan LC, et al. Analysis of LRRK2 functional domains in nondominant parkinson disease. Neurology. 2005 Oct 25;65(8):1319-21.

194. Tazi J, Durand S, Jeanteur P. The spliceosome: A novel multi-faceted target for therapy. Trends Biochem Sci. 2005 Aug;30(8):469-78.

195. The American College of Medical Genetics Laboratory Quality Assurance Committee. Technical standards and guidelines: Molecular genetic testing for rare disorders. 2005.

196. Wessagowit V, Kim SC, Woong Oh S, McGrath JA. Genotype-phenotype correlation in recessive dystrophic epidermolysis bullosa: When missense doesn't make sense. J Invest Dermatol. 2005 Apr;124(4):863-6.

197. Wessagowit V, McGrath JA. Clinical and molecular significance of splice site mutations in the plakophilin 1 gene in patients with ectodermal dysplasia-skin fragility syndrome. Acta Derm Venereol. 2005;85(5):386-8.

198. Wessagowit V, Nalla VK, Rogan PK, McGrath JA. Normal and abnormal mechanisms of gene splicing and relevance to inherited skin diseases. J Dermatol Sci. 2005 Nov;40(2):73-84.

199. Yu H, Patel SB. Recent insights into the smith-lemli-opitz syndrome. Clin Genet. 2005 Nov;68(5):383-91.

200. Zhang Q, Zulfiqar F, Riazuddin SA, Xiao X, Yasmeen A, Rogan PK, et al. A variant form of oguchi disease mapped to 13q34 associated with partial deletion of GRK1 gene. Mol Vis. 2005 Nov 14;11:977-85.

201. Di Leo E, Panico F, Tarugi P, Battisti C, Federico A, Calandra S. A point mutation in the lariat branch point of intron 6 of NPC1 as the cause of abnormal pre-mRNA splicing in niemann-pick type C disease. Hum Mutat. 2004 Nov;24(5):440.

202. Henriksen AM, Tumer Z, Tommerup N, Tranebjaerg L, Larsen LA. Identification of a novel EYA1 splice-site mutation in a danish branchio-oto-renal syndrome family. Genet Test. 2004 Winter;8(4):404-6.

203. Hellerud C, Adamowicz M, Jurkiewicz D, Taybert J, Kubalska J, Ciara E, et al. Clinical heterogeneity and molecular findings in five polish patients with glycerol kinase deficiency: Investigation of two splice site mutations with computerized splice junction analysis and Xp21 gene-specific mRNA analysis. Mol Genet Metab. 2003 Jul;79(3):149-59.

204. Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, et al. Hepatic CYP2B6 expression: Gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther. 2003 Dec;307(3):906-22.

205. Rogan PK, Svojanovsky S, Leeder JS. Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations. Pharmacogenetics. 2003 Apr;13(4):207-18.

206. Khan SG, Muniz-Medina V, Shahlavi T, Baker CC, Inui H, Ueda T, et al. The human XPC DNA repair gene: Arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res. 2002 Aug 15;30(16):3624-31.

207. Thompson TE, Rogan PK, Risinger JI, Taylor JA. Splice variants but not mutations of DNA polymerase beta are common in bladder cancer. Cancer Res. 2002 Jun 1;62(11):3251-6.

208. Emmert S, Schneider TD, Khan SG, Kraemer KH. The human XPG gene: Gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res. 2001 Apr 1;29(7):1443-52.

209. von Kodolitsch Y, Nienaber CA, Fliegner M, Rogan PK. Splice site mutations and atherosclerosis: Mechanisms and prediction models. Z Kardiol. 2001 Feb;90(2):87-95.

210. Svojanovsky SR, Schneider TD, Rogan PK. Redundant designations of BRCA1 intron 11 splicing mutation; c. 4216-2A>G; IVS11-2A>G; L78833, 37698, A>G. Hum Mutat. 2000 Sep;16(3):264.

211. Vockley J, Rogan PK, Anderson BD, Willard J, Seelan RS, Smith DI, et al. Exon skipping in IVD RNA processing in isovaleric acidemia caused by point mutations in the coding region of the IVD gene. Am J Hum Genet. 2000 Feb;66(2):356-67.

212. von Kodolitsch Y, Pyeritz RE, Rogan PK. Splice-site mutations in atherosclerosis candidate genes: Relating individual information to phenotype. Circulation. 1999 Aug 17;100(7):693-9.

213. Allikmets R, Wasserman WW, Hutchinson A, Smallwood P, Nathans J, Rogan PK, et al. Organization of the ABCR gene: Analysis of promoter and splice junction sequences. Gene. 1998 Jul 17;215(1):111-22.

214. Kannabiran C, Rogan PK, Olmos L, Basti S, Rao GN, Kaiser-Kupfer M, et al. Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the betaA3/A1-crystallin gene. Mol Vis. 1998 Oct 23;4:21.

215. Khan SG, Levy HL, Legerski R, Quackenbush E, Reardon JT, Emmert S, et al. Xeroderma pigmentosum group C splice mutation associated with autism and hypoglycinemia. J Invest Dermatol. 1998 Nov;111(5):791-6.

216. O'Neill JP, Rogan PK, Cariello N, Nicklas JA. Mutations that alter RNA splicing of the human HPRT gene: A review of the spectrum. Mutat Res. 1998 Nov;411(3):179-214.

217. Rogan PK, Faux BM, Schneider TD. Information analysis of human splice site mutations. Hum Mutat. 1998;12(3):153-71.

218. Schneider TD. Information content of individual genetic sequences. J Theor Biol. 1997 Dec 21;189(4):427-41.

219. Rogan PK, Schneider TD. Using information content and base frequencies to distinguish mutations from genetic polymorphisms in splice junction recognition sites. Hum Mutat. 1995;6(1):74-6.

220. Stephens RM, Schneider TD. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J Mol Biol. 1992 Dec 20;228(4):1124-36.

221. - Annals of Neurology. (- 5):- 625.

222. Atwood CS, inventor; Methods of assessing risk of alzheimer's disease in a patient. United States 2009.

223. Jung SC, Park JW, Cho DY, Yang JH, Yoon HR, Shetty G, et al. In: PHEX gene mutations and genotype-phenotype analysis of korean patients with hypophosphatemic ricketts. EPOS/IFPOS combined meeting; April 11 - 14, 2007; Sorrento, Italy.

224. Kim GH, Ko JM, Lee JJ, Yoo HW. In: A novel intronic point mutation of *CPS1* gene in a korean family with CPS1 deficiency. American society of human genetics meeting; 2007; San Diego, California.

225. Mondal A, Das S, Chu W, Sharma N, Elbein S. In: Genotype and tissue effects on alternative splicing of the TCF7L2 gene in tissues important to type 2 diabetes (T2DM) pathogenesis. Abstract book #1352; November 11-15, 2008; Philadelphia, Pennsylvania. The American Society of Human Genetics. p. Abstract #1352.

226. Schneider TD, Rogan PK, inventors; The United States of America as represented by the Department of Health and Human Services, assignee. Computational analysis of nucleic acid information defines binding sites. USA patent 5867402. Feb 2, 1999.

227. Willoughby CE, O'Prey D, Simpson DA. In: Modeling aberrant splicing in mutant genes associated with inherited retinal degeneration and bardet-biedl syndrome. American society of human genetics 2008 - annual meeting; 2008; Philadelphia, Pennsylvania. American Society of Human Genetics 2008. p. Abstract #1356.